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Abstract

We humans evolve slower than our pathogens. It is the cost of multicellular bodies
and long lifespans: how to survive to reproductive age while under continuous siege
by viruses and bacteria that can mutate and divide in as little as 30 minutes? To
keep up against this ever-changing sea of foes, our bodies produce a special class
of remarkably diverse cells: our T and B lymphocytes. As each individual B and
T cell matures, it uses specialized genomic shuffling machinery to generate a unique
random receptor. Collectively, this results in an army of over 100 million unique B cell
receptors and T cell receptors displayed across all of our lymphocytes: the adaptive
immune receptor repertoire. The repertoire functions as a pattern recognition system,
able to bind to and respond to nearly any pathogen or protein surface. It operates
through brute force: by having hundreds of millions of unique receptors, the body
will almost always have some with shape complementary to any molecular surface.

While this extraordinary diversity is central to our ability to fend off pathogens, it
has also made the adaptive immune system unusually difficult to study. In the history
of immunology, every step to characterize these immune receptors, from their isola-
tion, to their genomic locus sequencing, to solving their crystal structures, have been
confounded by the underlying universe of variation. Even now, although a history
of every immunological battle we have experienced is pumping through our veins, it
has remained tantalizingly out of reach for routine inspection. As a consequence, the
underlying etiologies of many immune-mediated diseases remain unresolved, and the
molecular details of adaptive immune recognition are only partially characterized in
almost all adaptive immune responses.
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Here we present a means of decoding the adaptive repertoire. We begin in chap-
ter 1 by presenting the development of a series of enabling technologies for analyzing
adaptive immune interfaces. Based on high-throughput sequencing, these technolo-
gies allow millions of datapoints to be collected for B cell receptors, T cell receptors,
single-cell paired heterodimer sequencing, high dimensional association of phenotypes,
high-throughput HLA genotyping, and peptide-MHC complexes: all of the core in-
teracting components of the adaptive immune repertoire. In chapter 2, we introduce
convergence analysis: a statistical framework for identifying receptors and cells that
perform a common function with non-identical but similar bits. We demonstrate
that across αβ TCRs, γδ TCRs, BCRs, pMHC pools and phenotypes, convergence
analysis provides a unifying framework for interpreting the adaptive immune system,
and any degenerate system where combinatorial diversity exceeds functional diversity.
In chapter 3, we review the consequences of clonal analysis and convergence groups
on the relationship between genetics, environment, and random chance in the reper-
toire’s ability to form specific clones and shared specific responses to common immune
stimulation. In chapter 4, a series of studies are presented that illustrate many of the
findings that are being made possible by reading the repertoires. In chapter 5, we
review interventional studies of selection pressures in the adaptive repertoire that are
made evident through the construction of synthetic repertoires in controlled settings.
In the final chapter, we comment on some of the new findings and new classes of
research that can be anticipated based on these methods.

Repertoire analysis is not a panacea. However, it will improve diagnostics by
being able to rapidly identify thousands of reactivities by directly reading the BCR
and TCR receptor repertoires. It will improve vaccine optimization by being able
to rapidly assay relationships between changes in vaccine composition, and changes
in number of clones, affinity of clones, isotype and addinity maturation of clones,
and focus on different epitope targeting receptor groups that emerge in response. It
will facilitate the rapid de-orphaning of antigen-specificities of TCRs in diseases of
unknown cause. It may provide some benefit to discovery of therapeutically relervant
receptors from natural responses, and guidance in further engineering of those recep-
tors. Companioned with good experimental designs, it can further our understanding
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of the relationship between our genetics, our environment, and the random receptor
generation engine inside of us.
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Chapter 1

Establishing Repertoire Analysis

Technologies

1.1 Introduction

The adaptive B and T lymphocytes perform molecular recognition of antigen with
extremely diverse receptor repertoires. Since 2008, the emergence of high throughput
DNA sequencing technologies have provided a mechanism for deep characterization of
millions of receptors, HLA genotypes, and cognate antigens. Combined with appro-
priate reagent engineering and computational platforms to productively process and
interpret the output data, this new class of repertoire analysis technologies provides
a means of analyzing the adaptive immune repertoires at sampling scales proximal
to their diversities. In chapter 1 we review the development of repertoire analy-
sis technologies for antibody repertoires, αβ TCR repertoires, g/d TCR repertoires,
and pMHC antigen repertoires: the central interacting components of the adaptive
immune receptor system.

In the first study, “Precise determination of the diversity of a combinatorial anti-
body library gives insight into the human immunoglobulin repertoire,” by Glanville
et al in PNAS from 2009, we provide the first published example of high-throughput
sequencing of human antibody repertoires. The study developed Hidden Markov
Models as an instrument of analysis of adaptive repertoires that are resilient to read
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error, PCR error, affinity maturation, and genotype polymorphism. By evaluating
the repertoire before and after selection against antigen when displayed on phage,
it provided a controlled environment for quantifying antigen-driven repertoire bias.
In the second study, “Diversity and clonal selection in the human T-cell repertoire,”
by Qi et al in PNAS from 2013, we present a primer set for T-cell receptor bulk
sequencing on Illumina MiSeq that has been adopted in multiple subsequent studies,
and established multiple valuable metrics for estimating the diversity of a natural
repertoire. In the third study, “Linking T-cell receptor sequence to functional phe-
notype at the single-cell level” by Han, Glanville Hansmann and Davis, we present
an easily adoptable method for multi-locus single-cell sequencing. Demonstrated on
the α-chain, β-chain, and a panel of phenotypic markers of tumor-inflitrating lympho-
cytes, it provided a mechanism for extracting the complete αβ heterodimer receptor as
well as phenotypic encoding of phenotypic markers on over 2000 single cells in a single
sequencing experiment. In the fourth study, “Deconstructing the peptide-MHC speci-
ficity of T cell recognition,” the Garcia laboratory developes a yeast-display library
of peptide-MHC complexes, where a library of variable peptides are presented on an
engineered MHC. When panning this library with a TCR of interest, we repeatedly
demonstrate that a swarm of thousands of related peptides can be selected for that
share amino acid features: an early demonstration of the properties of convergence
that will be greatly expounded on in chapter 2. We end chapter 1 with a review of
the technological, bioengineering, bioinformatic, and theoretical considerations and
best practices required for successful repertoire analysis.

1.2 Antibody repertoire sequencing

Antibody repertoire diversity, potentially as high as 10^11 unique molecules in a
single individual, has historically confounded characterization by conventional se-
quence analyses. In this study, we present a general method for assessing human
antibody sequence diversity displayed on phage using massively parallel pyrosequenc-
ing, a novel application of Kabat column-labeled profile Hidden Markov Models, and
translated complementarity determining region (CDR) capture-recapture analysis.
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Pyrosequencing of domain amplicon and RCA PCR products generated 1.5 x 10^6
reads, including more than 1.9 x 10^5 high quality, full-length sequences of antibody
variable fragment (Fv) variable domains. Novel methods for germline and CDR clas-
sification and fine characterization of sequence diversity in the 6 CDRs are presented.
Diverse germline contributions to the repertoire with random heavy and light chain
pairing are observed. All germline families were found to be represented in 1.7 x 10^4
sequences obtained from repeated panning of the library. While the most variable
CDR (CDR-H3) presents significant length and sequence variability, we find a sub-
stantial contribution to total diversity from somatically mutated germline encoded
CDRs 1 and 2. Using a capture-recapture method, the total diversity of the antibody
library obtained from a human donor Immunoglobulin M (IgM) pool was determined
to be at least 3.5 x10^10. The results provide insights into the role of IgM diver-
sification, display library construction, and productive germline usages in antibody
libraries and the humoral repertoire.

1.2.1 Introduction

The humoral immune response recognizes novel molecular surfaces by exposure to
a vast repertoire of potential binding partners (1). Antibody paratopes, the agents
of humoral molecular recognition, mediate specific binding through a protein-antigen
interface that varies dramatically between molecules. When confronted with a novel
antigen, the chance that any given antibody in the pool will bind is low. Therefore, it
is primarily the diversity of the antibody repertoire that determines whether a specific
complementary paratope will be recovered (2).

Under such selective pressures, a number of mechanisms to maximize the recogni-
tion potential of the antibody repertoire have evolved. Antibody paratopes are found
at the hypervariable region of a light and heavy chain heterodimer. Each chain con-
tributes 3 loops to a spatial cluster of complementarity determining regions (CDRs).
CDRs 1 and 2 are encoded in germline V-segment loci: 51 VH and 70 Vk/l loci, each
with unique amino acid encodings, exist in a typical human haplotype (3–5). Di-
versity in each chain is determined by combinatorial VH-(DH)-JH (for the heavy) or
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Vk/lJk/l (for the light) rearrangements, P and N-addition, junctional flexibility, and
somatic hypermutation of variable domain nucleotides, with a concentration on CDR
encoding regions (6, 7). The combinatorial association of such stochastically gener-
ated light and heavy chains has the potential to generate many orders of magnitude
more diversity than can be uniquely displayed on the 10^11 B-cells in a single indi-
vidual’s lymphocyte population (2, 8). With each antibody variable fragment (Fv)
encoded by at least 650 base pairs, the presented repertoire is potentially 4 orders of
magnitude larger than the entire human diploid genome (6.4 x 10^9 bp).

Such extreme sequence diversity poses multiple challenges to repertoire charac-
terization efforts. Achieving sufficient sampling depth to determine total diversity is
impractical with Sanger-based sequencing (6, 7). High-throughput sequencing meth-
ods, while able to address sampling depth, have until recently produced read lengths
under 200 bp; too short to span 3 CDRs in a single read (9). While in other set-
tings these technologies can rely on assembly to overcome short read lengths (10),
the diverse yet repetitive char acter of antibody Fv reads cause assembly to either
fail or return erroneous chimeric contigs that do not represent individual population
members (10, 11). Once sequences are obtained, somatic hypermutation and junc-
tional diversity pose a challenge to reliable CDR boundary identification (12–14).
The problem is significant: a recent study reports that over 10% of the variable do-
main sequences in the Kabat antibody database have been misnumbered by existing
methods (15). Given these limitations, past diversity assessment efforts have focused
on low-resolution length-based CDR3 spectratyping (16) and local nucleotide-level
V-(D)-J assessment of more limited TCR b-chain (10) and zebrafish repertoires (17).
While these approaches provide valuable insights into specific features of binding site
diversification, it has not yet been feasible to characterize the combined effects of
diversification on the complete translated paratope at molecular resolution.

Long-read high-throughput sequencing chemistry, Bayesian fold recognition and
a single chain variable fragment (scFv) architecture have created an opportunity for
complete paratope repertoire analysis. Recent advances in high-throughput pyrose-
quencing chemistry have allowed 10^6 400 bp sequences to be generated in a single
run: deep enough for capture-recapture diversity assessments and long enough to span
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all 3 CDRs of a chain in a single read. Once read, a novel application of Kabat-labeled
profile Hidden Markov Models (HMM) borrows from advances in remote homology
fold recognition to provide an O(n) fast, highly accurate unified Bayesian frame-
work for domain recognition, CDR boundary identification, and multiple sequence
alignment (18–21). With reliable access to the entire CDR contribution of a vari-
able domain in a single read combined with shotgun reads spanning the heavy-light
chain pair-ing, it becomes possible to directly estimate and characterize the number
of unique binding surfaces presented by an antibody library repertoire.

Accurate diversity assessment is of particular interest during the construction of
combinatorial antibody repertoires (22, 23). Phage display libraries allow an anti-
body repertoire to be queried with a candidate antigen directly, without the need
to proceed through in vivo immunization (24, 25). A number of strategies for intro-
ducing repertoire diversity during library construction have been proposed (26–28)
but existing methods to assess the final functional library diversity are based on es-
timates of transformation efficiency and limited sequence sampling. Here we present
the design and assessment of a scFv library built directly from the complete germline
diversity of 654 human donor Immunoglobulin M (IgM) repertoires; a lymphocyte
reservoir that includes naïve, memory, plasma, and preimmune somatically altered
paratopes (29–31). The available diversity of the entire library was assessed directly
using high-throughput pyrosequencing to generate datasets large enough to perform
capture-recapture diversity (17) and chain assortment estimates. We also compare the
repertoire and diversity of the input library to functional binders derived from pan-
ning the library against 16 diverse antigens. The results provide a powerful method
for monitoring diversity during future library construction efforts and fundamental
insights into the strategy of functional paratope diversification elected by evolutionary
forces.

1.2.2 Results

Antibody Library Generation. Heavy and light chain V-genes from 654 healthy human
donors were separately amplified by PCR using equimolar mixture of degenerate
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family primers (32, 33) individually validated at a common reaction condition of 25
PCR cycles at 94°C for 45 sec, 58°C for 45 sec and 72°C for 60 sec. The heavy
and light domain products were randomly associated in a scFv VH-(G4S1)3linker-VL
architecture. A total of 120 ug of scFv antibody repertoire from 72 ug of VH-Vk and
48 ug of VH-Vl was obtained and ligated into a display vector. Three hundred and
ten transformations yielded 302 ml total library volume. Plating of serial dilutions
for colony counting resulted in an estimated 3.1 x 10^10 (SD 0.7 x 10^10) successful
transformants containing scFv antibodies in the total remaining 301 ml library pool.

Antibody Library Selections. Sequences for more than 1.7 x 10^4 nonredundant
antibodies were obtained from output generated by panning against 16 human and
nonhuman targets. These sequences were CDR clustered using the profile HMM CDR
and germline classification methods used on the library. For each antigen, an average
of 30 representative sequences from distinct CDR clusters were selected for further
characterization: affinities obtained ranged from less than 100 pM to over 1 uM.

454 Sequencing. Each of the 2 samples, rolling circle amplified (RCA) shotgun
and variable domain PCR amplicon, were sequenced using the GS FLX Titanium
large PicoTiter plate in 2 separate sequencing runs. The 2 sequencing runs combined
yielded 1,452,529 and 1,602,399 raw well reads for the shotgun and amplicon library,
respectively. After the signal processing step of the 454 data analysis pipeline, where
reads may be rejected by multiple signal and quality filters, we obtained 923,876
(shotgun) and 554,310 (amplicon) quality filter-passing reads.

Accuracy of Profile HMM CDR Classification and Kabat Numbering. In 779
benchmark cases, 99.8% of CDR-H3 loops were classified correctly, and all other
CDRs received perfect classification (supporting information (SI) Fig. S1A). The sin-
gle error was due to assignment of stem residue, H102, to a neighboring insert state
at the C terminus of the H3 (Fig. S1B). With a CDR boundary insert correction, all
cases classified correctly. Using the scFv HMM (Smith/Waterman local alignment,
expectation value <1e-10, >70% match state occupancy in all FW regions in single
reading frame), 96,303 heavy and 98,946 light chain reads spanning entire variable do-
mains in a single reading frame were identified in the pyrosequencing results, aligned,
and CDR labeled.
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Figure 1.1: Heavy and light family frequencies and pairing observed in 18,158 RCA
reads. (A) Heavy (Left) and light chain (Right) family frequencies observed in the
library. Only families at 1% chain frequency are shown. (B) Heavy and light chain
family pairings occur in proportion to the abundance of their partner, indistinguish-
able from a null model of random assortment by Chi-squared (P value: 0.9512). (C)
Heavy and light chain families pairings in second and third round Panning show pair-
ing preferences that cannot be explained by random assortment (P value: 0.00107).
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Table 1.1: Partial list of V-segment germline distribution in 100% nonredundant
Kabat sequences (Kabat), scFv domain-specific amplicons (ampl.), scFv RCA, and
Sanger sequencing from 1.7 x 10^4 nonredundant round 2 and 3 binders against 16
unique antigen targets (Pann.). Forty-eight of 51 IMGT functional HV germlines
were recovered, 53 of 70 K/L germlines were recovered. (see Table S1 and S2 for
complete list)

GS-Linker Assessment. Of the subset of RCA shotgun library reads that spanned
the GS-linker and framework regions of VH and Vk/l domains to either side, 95.6%
appeared as expected by design. The remaining 4.4% had predominantly single errors
that could be genuine linker errors or pyrosequencing read errors.

Germline Classification of Library Clones. In >250,000 simulations, sequences
with less than 30 mutations in the V-segment were never misclassified. Even with
up to 50 simulated mutations, 99.97% of test sequences were correctly classified,
with only 5.8% receiving reduced family-level classification (Fig. S2 A and B). This
limited rate of resolution reduction corrects 84% of sequences misclassified by a naïve
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approach. By comparison, 95% of all antibodies recovered from the library differed
by less than 30 mutations from the closest germline allele (Fig. S2C).

Using the classification method, all Ig-bearing library sequence reads were clas-
sified to germlines (Table 1). Forty-eight heavy and 53 light known functional V-
segment germline loci were encountered at least 10 times in the full-domain sequence
reads (Tables S1 and S2). In addition, 2 germlines listed as pseudogenes by Inter-
national ImMunoGeneTics Information System (IMGT) (HV3-h and HV3–71) were
recovered in rearranged form (127 and 240 times, respectively). Germlines sampled
were consistent between variable-domain amplicon and RCA-amplified shotgun li-
brary samples and resemble the distribution found in Kabat database, although some
differences are observed (Kolmogorov-Smirnov assessments: Amplicon vs. RCA D =
0.0930; P = 0.989, Amplicon vs. panned D = 0.1163, P = 0.917, Amplicon vs. Kabat
D = 0.1395, P = 0.765).

Heavy and Light Chain Pairing. Heavy and light chain family pairings in the
library were found to occur in proportion to the abundance of the respective families:
indistinguishable from a null model of random assortment (X2 observed vs. expected:
H/L: P value: 0.9512) (Fig. 1 A and B). While most of the dominant germline families
are represented in the chain pairings of leads generated after panning, in panned
sequences we observe nonrandom assortment of families (X2 panned vs. library H/L:
P value: 0.00107), illustrated by the deemphasis of KV4 and the increased lambda
contribution (Fig. 1C).

CDR-H3 Diversity. The CDR-H3 length distribution was consistent across site-
directed and RCA-amplified shotgun library preparation approaches. A Poisson dis-
tribution with mean 11.5 (Kabat 95–102), as observed by others, was consistent with
results found here (7), although an increase in H3 of length 5 was observed. (Fig.
2A).

Somatic Mutation Distribution. In V-segment encoded CDRs (1 and 2), 17% of
sequences were unaltered from germline, while 78% of sequences had between 1 and
6 aa mutations (Fig. 2C; see Tables S1 and S2 for details). The definition of somatic
mutation used counts distance from closest germline allele and could therefore be
inflated by novel allelic and copy number loci variations not found in IMGT. Position
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Figure 1.2: CDR-H3 length and amino acid composition for the most common length
bin. (A) Observed CDR-H3 length diversity from 65,240 amplicon and 22,769 RCA
reads. (B) Position specific amino acid frequencies for 10,281 length 11 (determined
by positions 95–102) CDR-H3s. (C) Number of nongermline encoded amino acids
found in CDRs 1 and 2, by domain type.
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specific scoring matrices of all sequences for each germline show a pattern of somatic
hypermutation consistent with that previously reported (34).

Total Diversity Estimate. The observed diversity in the heavy chain is dominated
by contributions from the CDR-H3 (Fig. 3A), while that observed in the light chain is
more evenly contributed by all 3 CDRs (Fig. 3B). In the total paratope contribution
from the heavy chain, diversity contributions from H1 and H2 more than double the
diversity found in H3 alone. In the light chain, combined CDR diversity is more
than 6-fold higher than diversity in any single CDR. Figure 3 C and D, showing
percent recapture at sampling depths for the heavy and light chain CDRs, respectively,
recapitulates patterns observed in the diversity estimates (Fig. 3 A and B) with CDR-
H1 and CDR-H2 approaching saturation at lower sampling depths than CDR-H3. In
the light chain, CDR-L2 saturates at lower sampling depths than both CDR-L1 and
CDR-L3. In general, the approach to saturation for the light chain is more rapid than
the heavy chain counterpart. A lower bound estimate of 2.2 x 10^5 (SD 2.2 x 10^3)
diversity for heavy domain, and 1.6 x 10^5 (SD 0.8 x 10^3) for the light domain
is obtained by nonredundant capture-recapture at M = 33,000 as rarefaction trends
toward asymptote in Figs. 3 A and B.

1.2.3 Discussion

Direct analysis of phage displayed paratope diversity was made possible by recent
advances in long-read pyrosequencing, a novel application of profile HMM-based se-
quence analysis, and syntenic placement of Fv chains in the scFv construct. Long read
lengths allowed the entire CDR contributions from variable chains to be assessed in
concert without assembly. A combination of variabledomain amplicon and RCA of
plasmid library sample preparations used for sequencing allowed for the depth re-
quired for effective capture-recapture based diversity assessments, heavy and light
chain paring assignment, and scFv construct integrity (including the GS linker) to be
evaluated directly. HMM-based residue labeling provided the flexibility required for
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Figure 1.3: Diversity estimates for heavy and light chain CDRs in the antibody library.
(A and B) 10 capture-recapture rarefaction results for CDR1, 2, 3 and concatenated
CDRs for heavy and light chain, respectively. (C and D) Percent recapture during
rarefaction analysis.
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accurate CDR identification and residue-specific somatic hypermutation rate assess-
ment in a diverse sequence space. Germline analysis provided a mechanism to assess
the dispersion of potential paratope diversity in an antibody repertoire.

Considering only CDRs and using a stringent definition of diversity that requires
at least 2 amino acid mutations from any other sequence for each chain to be con-
sidered unique, a lower bound diversity estimate of 2.2 x 10^5 was determined for
the heavy chain CDRs, and 1.6 x 10^5 for the light chain CDRs. While it is possi-
ble that this strict definition of diversity underestimates the total number of unique
molecules available in the library, doing so minimizes the chance that read errors in
assembly-free sequence could contribute to artificially inflating the recapture diver-
sity estimates. Given the observed random pairing of heavy and light chain variable
domain families in the library (Fig. 1), we estimate the combined library diversity
of unique nonredundant paratopes to be near 3.5 x 10^10. This estimate is quite
similar to the predicted number of transformants recovered during library construc-
tion (3.1 x 10^10, SD 0.7 x 10^10). While rarefaction studies do not show complete
saturation for the concatenated CDRs at sampling depths displayed (Fig. 3 A and
B), the projected asymptotes suggest that the diversity of a well-constructed phage
displayed antibody library is limited by transformation efficiency.

The single largest source of paratope diversity in antibodies is derived from vari-
ation in the heavy chain CDR3 loop. In the library, CDR-H3 lengths ranged from 1
to 31 aa, following an apparent Poisson distribution (Fig. 2A). While every amino
acid could be found at most positions in CDR-H3, the distribution of abundances
varied depending on sequence length (Fig. S3) in a manner characteristic of these
loops previously observed in human antibodies (27, 34).

Diversity in V-segment encoded CDR 1 and 2 is dispersed by germline origin and
diversified by somatic hypermutation. The 48 heavy and 53 light germlines found in
the library provide 2,544 distinct potential heterodimer pairings. Library antibodies
pair randomly at the family level in the scFv construct. If this trend can be assumed
to hold true at the level of germlines, then based on frequencies observed (Table 1;
see Tables S1 and S2 for complete list) and a library size of 10^10, one can expect
to find between 105–107 unique combinations of most heterodimer germline pairs
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in the library. In each chain, germline encoded CDRs 1 and 2 vary by average of
4.4 aa from the next closest germline. This gap in CDR sequence space between
germlines is thoroughly explored by somatic hypermutation, with 78% of antibody
chains displaying between 1–6 aa mutations in their V-segment encoded CDRs. The
total contribution of germline origins and somatic mutation is substantial: estimates
that consider all 3 CDRs on each chain result in a 12-fold increase in total diversity
compared an estimate derived from H3 and L3 alone (Fig. 3).

When panning 16 diverse protein test antigens with the phage displayed anti-
body library, multiple binders were always successfully recovered. In sequencing over
1.7 x 10^4 leads recovered during the second and third round of panning, antibod-
ies were found to be derived from almost every germline available in the library.
For each antigen panned, at least 30 unique antibody clusters were identified that
explored multiple distinct epitopes across their respective target’s surface. The diver-
sity of binders recovered is a strong indication that the deliberate inclusion of diverse
frameworks into the library contributed directly to accessible diversity. While some
variation in germline frequency (Table 1) and chain pairings (Fig. 1C) were observed,
the overall similarity in distributions between the phage display library and panned
binder products suggests that germlines were recruited in rough proportion to their
availability. This indicates that the display of antibody on phage in a scFv format
does not significantly restrict the available diversity accessible to in vitro panning.

Even with 302 transformations, diversity came close to saturating transformants.
While heavy and light chain shuffling and pooling of cDNA from multiple donors
during library construction makes it difficult to speculate on whether this is a direct
reflection of the diversity of individual antibody diversity or of the degree of humoral
overlap between individuals, it does suggest that the maximum possible repertoire
diversity supported by human germlines may yet be fully explored by phage display.
While this library design was successful, biases during construction can always impact
the final functional diversity and not be readily noticeable using traditional diversity
estimation techniques. In future library development projects, deep sequencing in
conjunction with germline and CDR analysis could provide a powerful quality as-
surance technique to identify and correct biases that may be introduced during each
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stage of library construction. This general methodology has immediate applications
in quality assurance during library construction as well as potential applications in
antibody repertoire assessment in disease states.

1.2.4 Methods

Construction of Human Naïve scFv Library. Total RNA and/or mRNA were obtained
from 637 healthy human peripheral blood leukocyte donors (BioChain Institute and
Clontech) and 17 human spleens (BioChain Institute, Clontech, and OriGene). First
strand cDNA was synthesized by using

human heavy chain constant region primer
HuIgM (5’-TGGAAGAGGCACGTTCTTTTCTTT-3’),
human k constant region primer
HuCk (5’-AGACTCTCCCCTGTTGAAGCTCTT-3’)
and human l constant region primer
HuCl (5’-TGAAGATTCTGTAGGGGCCACTGTCTT-3’)
according to vendor specifications (Invitrogen). Human heavy and light chain

V-genes were separately amplified by PCR using equimolar mixture of degenerate
family primers (32, 33): 9 VH and 4JH for VH genes, 7 Vk and 5 Jk for Vk genes,
and 9 Vl and 3 Jl for Vl genes at a final concentration of 10pmol/ul of each primer.
The amplified products were assembled as VH-(G4S1)3linker-VL scFv antibodies ac-
cording to Marks and Bradbury (32). The assembled scFv antibody repertoire were
purified, cut with SfiI, and cloned into a vector. TG1 competent cells (Stratagene)
were transformed in with the scFv vector by electraporation using BTX 1 mm gap
cuvettes in 310 parallel reactions. Transformation efficiency was estimated by colony
counting of plated serial dilutions drawn from 1 ml of the 302 ml posttransformant
pool before any incubation.

Selection of Human Antibodies from scFv Phage Display Library. Phage antibod-
ies were prepared from scFv library glycerol stocks according to published protocols
(33). The specific antibodies to 16 diverse antigens were selected and screened by
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ELISA and BIAcore assay after 3–4 rounds of biopanning through either immobi-
lized antigen at 5–10 ug/ml for solid phase or biotinylated antigen at 20 –200 nM
for solution phase depending on the antigens according to standard protocols (33).
The obtained antibodies were sequenced and grouped by CDR clustering for further
analysis. 454 Titanium Sequencing. Two sample preparation strategies were used for
sequencing the scFv library. High-depth bidirectional variable domain coverage was
provided by PCR amplification of the VH and Vk/Vl scFv insert regions using am-
plicon specific primers complementary to the constant regions of the vector and the
GS-linker and harboring the 454 Titanium adaptor sequences to generate Ig amplicon
libraries. Vector composition and read error-rate were assessed by sequencing single-
stranded RCA-shotgun libraries generated by RCA of the whole vector, followed by
random shearing and ligation of 454 Titanium adaptors. The sequencing runs using
the Roche/454 Genome Sequencer FLX were set up according to the 454 Titanium
Sequencing protocol. Please see SI Text for RCA and shotgun Library preparation,
PCR amplicon library preparation (including primer sequences used, Table S3), and
sample library titration for 454 Titanium sequencing. Information on controls perfor-
mance, loading density, and signal intensities in addition to signal processing and run
yield are listed as well. Sequence Analysis. Translation, multiple sequence alignment,
Kabat numbering and identification of structurally conserved CDR boundary posi-
tions were performed with HMMER profile hidden Markov models (18) designed to
represent the scFv architecture. The HMM was trained with normalized concatena-
tions of 95% nonredundant IMGT (35) germline V and J segment amino acid multiple
sequence alignments, a direct GS-linker encoding, and a permissive insert D segment.
Direct mapping of Kabat numbering system to columns in the HMM allowed specific
Kabat positions and ranges to be identified. CDRs were bounded by conserved Kabat
positions H1 31–35, H2 51– 61, H3 93–102; L1 24 –34, L2 50 –56, and L3 89 –97 that
could be identified with high accuracy (details in SI Text). The approach was eval-
uated with a benchmark of 779 superposed nonredundant antibody structures from
multiple species. Reads with frames bearing 10^-10 or better expectation values to
the model were aligned to and annotated by the profile. Seventy percent match state
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Figure 1.4: Probabilistic Germline Classification Formula 1, where Si is the confidence
that primary hypothesis i is correct, l is the common alignable query sequence length,
u is the observed number of mutations between query and germline i, d is the distance
difference between the primary hypothesis i and the alternate g, and G is the total
number of germlines. In cases where the sum of alternate hypotheses was greater
than the cutoff 10^-3, family classification was attempted.

coverage in neighboring framework regions was a read-through requirement for CDR
and GS-linker analysis.

Germline Classification. Classification of V segment germlines was performed
by nucleotide comparison to IMGT database of allelic variants using BLAST (36).
Classification was made to germline, and a subset of very similar germlines were pre-
grouped during classification (Indicated by solidus in Table 1). To address increased
risk of misclassification in a mutation-rich sequence space, confidence in classification
was assigned using a benchmarked probabilistic framework. Confidence that the top
hit was the correct germline was determined by Probabilistic Germline Classification
Formula 1, where Si is the confidence that primary hypothesis i is correct, l is the com-
mon alignable query sequence length, u is the observed number of mutations between
query and germline i, d is the distance difference between the primary hypothesis i
and the alternate g, and G is the total number of germlines. In cases where the sum
of alternate hypotheses was greater than the cutoff 10^-3, family classification was
attempted. The method’s ability to classify sequences with somatic mutations and
read errors was benchmarked by simulation: >250,000 sequences derived from human
frameworks and bearing progressive simulated somatic mutation loads.

Diversity Assessment. Nonredundant functional binder diversity was assessed per
domain, using only translated CDR sequences from single reading frames spanning
the entire variable domain. By ignoring silent mutations and any mutations that oc-
curred in the framework, sequencing error effects were minimized and only variation
most likely to impact binding specificity was evaluated. Diversity was determined
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with capture-recapture rarefaction as previously described (17) with 2 modifications:
1) the entity compared when assessing recapture was the translated amino acid con-
tent of CDRs, and 2) a rigorous nonredundant diversity assessment, counting any
CDR concatenation with less than 2 amino acid differences as being a functionally
equivalent recapture, was performed for each estimate.

454 Sequencing: Rolling Circle Amplification and Shotgun Preparation. The Tem-
pliPhi DNA Amplification kit (GE Healthcare) was used to exponentially amplify the
double-stranded circular plasmid DNA templates containing the scFv insert by RCA.
The RCA reactions were set up for 18 h using the manufacturer’s protocol. Three
micrograms of amplified plasmid DNA sample was sheared per microTube on the
Covaris E210 instrument (Covaris Inc.). The high molecular weight RCA amplified
plasmid DNA was fragmented for 87 sec using 5% duty cycle, 200 cycles per burst and
intensity of 3. Fragmented DNA was purified using AMPure SPRI beads (Agencourt)
to remove fragments smaller than 400 bp. One ul of purified DNA was analyzed using
the DNA 7500 chip assay on the 2100 Bioanalyzer (Agilent Technologies) to make
sure that >80% of the fragments were between 350-1000 bp. The purified fragmented
DNA was further processed according to the 454 FLX Titanium Library construction
kit and protocol (Roche Applied Science) to ligate adaptors specific to the Titanium
sequencing chemistry. The resulting single-stranded DNA library was assessed for size
distribution using the RNA 6000 Pico chip on the 2100 Bioanalyzer (Agilent Tech-
nologies) and quantified using the Ribogreen RNA Quantitation Kit (Invitrogen) on
a Synergy 2 (BioTek Instruments Inc.). Emulsion PCR (emPCR) and titration by
enrichment at 0.5, 1, 2, 4 copies per bead (cpb) was carried out according to the
454 Titanium emPCR protocol to determine the optimal ratio of the library DNA
fragments to emPCR beads. Large volume emulsions were set up at the optimal ratio
of 1.5 DNA copy per bead.

454 Sequencing: PCR Amplicon Preparation. Two pairs of PCR primers were
designed per amplicon to span the VH and Vk/l regions of the scFv insert. One PCR
primer pair contained the Titanium adaptor sequence with the sequencing primer
binding site incorporated as part of the PCR forward primer. The second PCR primer
pair contained the Titanium adaptor sequence with the sequencing primer binding
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site incorporated as part of the PCR reverse primer (See Table S1 for oligonucleotide
sequences). This design allowed for the bidirectional sequencing of the amplicon li-
braries using the Titanium chemistry and the currently available Titanium emPCR
kit from Roche. The Titanium library adaptor sequences were kindly provided by
Roche. Four independent PCR reactions were set up with each of the 2 PCR primer
pairs for the VH and Vk/l amplicons using Platinum TaqDNA Polymerase (Invit-
rogen). The doublestranded DNA libraries were assessed for quality on the Agilent
Bioanalyzer 2100 DNA 1000 chip and quantified using the Picogreen assay (Invitro-
gen). Small volume emPCR and titration by enrichment at 0.075, 0.15, 1, 2, 4 cpb
was carried out according to the 454 Titanium emPCR protocol to determine the
optimal cpb for each of the 4 amplicon libraries. Final small volume emulsions were
set up at the optimal cpb of 0.10. The DNA beads from the 4 amplicon libraries were
pooled before sequencing to enable bidirectional reads for the VH and Vk/l regions.

454 Sequencing: Sample Titration. Before emulsion PCR and sequencing, sample
DNA size and concentration was determined by f luorometr y and capillar y elec-
trophoresis to estimate optimum ratio of DNA molecules and beads for the emulsion
PCR process. Since emPCR performance and yield of clonally amplified fragments
depends on this ratio, the Roche/454 sequencing protocols recommend an empirical
optimization using smallscale emPCR reactions and measuring yields of microparti-
cles with positively amplified DNA by solid-phase capture of DNA beads by oligonu-
cleotide hybridization (process called “enrichment”) (1). It has been empirically de-
termined that enrichment yields around 10% of the starting number of microparticles
used in an emPCR reaction indicate that majority of DNA beads will carry clonally
amplified sequences (2). A 3-point titration was used for the shotgun library and an
optimum ratio has been determined to be between 1–2 DNA copies per bead, result-
ing in 7–10% yield of enriched beads (R2 = 0.99). The amplicon libraries titrations
were less linear (R2 = 0.65) and the titration range had to be extended over 6 points
(0.075, 0.15, 0.5, 12, 4 cpb) to achieve enrichment yields around 10%. At 0.1 cpb, the
final enrichment yields for amplicon libraries still varied between 10 and 20%.
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454 Sequencing: Titanium Sequencing. The sequencing runs using the Roche/454
Genome Sequencer FLX were set up according to the 454 Titanium Sequencing proto-
col (3). One 4-region sequencing run was initially set up to evaluate the performance
of the Titanium RCA shotgun and amplicon library sample preparations. Greater
depth of coverage on these libraries were consequently obtained using a 2-region Ti-
tanium sequencing run.

454 Sequencing: Controls Performance, Loading Density, and Signal Intensities.
The quality of 454 sequencing depends on multiple parameters optimized for each
particular application (reviewed in 1). Among these parameters, the PicoTiter plate
loading density and intensity of light signals produced in wells are among the most
important, since these parameters affect well to well signal cross-talk. Since optimized
protocols for sequencing amplicon libraries using the GS Titanium kits were not
available at the time of these experiments, amplicon library samples were loaded onto
the PicoTiter plate and sequenced in the same way as the shotgun library. Sequencing
run performance was checked based on metrics generated for control DNA sequences,
provided as a part of the Roche sequencing reagents. Sequencing performance of
controls was about 20% lower in regions containing amplicon libraries compared to
the shotgun library regions, measured as percentage Control wells sequencing at 98%
accuracy over 200 bases. PicoTiter plates were loaded with equal amounts of DNA
beads for both shotgun and amplicon libraries. Due to bead deposition variability,
the region containing amplicon library had 14% more wells occupied by DNA beads.
In addition, the average light signal intensity per nucleotide incorporation in the
amplicon library sample was about 1.8 times stronger than the signals produced by
the shotgun librar y. It is thus reasonable to conclude that the combination of loading
density and signal intensity reduced quality of sequencing both for the control DNA
templates as well as the amplicon library sample, resulting in more amplicon library
reads being rejected by the 454 software read quality filters as described below.

454 Sequencing: Titanium Signal Processing and Run Yield. The 2 sequencing
runs combined yielded 1,452,529 and 1,602,399 raw well reads for the shotgun and am-
plicon library, respectively. For both libraries, more than 99% (99.53% and 99.23%)
of raw reads contained the 4-base key sequence. After the signal processing step of
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the 454 data analysis pipeline, where reads may be rejected by multiple signal and
quality filters, we obtained 923,876 (shotgun) and 554,310 (amplicon) filter-passing
reads. The shotgun library sample had a ratio of filter-pass to key-pass reads of 63%,
whereas the amplicon library sample produced only 35% filter-pass sequence reads of
the key-pass reads. When examining which of the signal processing filters rejected
most of the reads, we have observed that for the shotgun library sample, rejected
reads were equally split between the “Dots and Mixed” filter and the “Quality Score
Trimming” filter (18.18% and 18.48%), both metrics being below the recommended
threshold of 20%. For the amplicon library sample, only 13.21% of reads were re-
jected by the “Dots and Mixed” filter, but 51.7% of reads failed the “Quality Score
Trimming” filter. Despite this limitation of the GS data analysis software for our ap-
plication, we have obtained 117Mb of high quality sequence for the amplicon library
and 375Mb for the shotgun library.

Sequence Analysis: Germline Classification Benchmark. The reliability of
germline assignment was evaluated by simulation of somatic hypermutation on
germline v-segments. Somatic mutations were randomly applied to IMGT germline
sequences, after which an attempt was made to then classify the derived sequence
to nodes in an NJ reference tree built from the IMGT reference alignment. The
distribution of somatic mutations in the actual pyrosequencing reads showed 95% of
sequences with less than 30 apparent somatic mutations and >99.5% of sequences
with less than 40 somatic mutations in the library as a whole (Fig. S2C). To thor-
oughly evaluate the space, the number of somatic mutations evaluated was 1 to 50,
with each germline sequence retested 10 times at each level of somatic mutation (ev-
ery functional human germline was tested 500 times in total). The simulation was
run in a distributed cluster that included a 64 CPU XSERVE cluster and multiple
XGRID-linked desktops using analysis libraries written in Perl. The assessment re-
sulted in an extremely low rate of misclassification even when 50 somatic mutations
were applied: in the combined datasets, 4 out of 152,500 VH simulations were mis-
classified and 14 out of 103,000 Vk/l simulations were misclassified(Fig. S2 A and B).
This represents 84% correction over a naïve assessment, where the best BLAST hit is
automatically accepted (33 Vh and 83 Vk/l sequences are misclassified in the naive
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case). A reduction in resolution did occur: when above 30 mutations, heavy and light
chains began to show an increased rate of lower resolution calls (assigning a sequence
to an internal node instead of an explicit germline leaf node of the reference tree).
As expected, this was disproportionately taking place for germlines that shared high
sequence identity with another germline (less than 5 distinguishing polymorphisms).
About 95% of germlines were still classified to the fullest resolution when even 50
mutations had been applied. It was concluded that all sequences along the observed
distribution of somatic mutations in the actual pyrosequencing reads will be reliably
classified with this approach. (Fig. S2C).

Sequence Analysis: HMM Validation. Direct mapping of Kabat numbering system
to columns in the scFv HMM allow specific Kabat positions and ranges to be identified
with high fidelity. The CDR boundary positions used were CDR-H1 Kabat 31–35,
CDR-H2 Kabat 51–61, CDR-H3 Kabat 93–102; CDR-L1 Kabat 24 –34, CDR-L2
Kabat 50 –56, CDR-L3 Kabat 89 –97. Boundar y positions were used to identify CDRs
for comparison. The ability of the HMM to automatically annotate CDR boundaries
was assessed with 779 nonredundant PDB antibody structures from multiple species.
The structures were superposed to a reference 1ck0 without information from the
HMM. The HMM was then used to identify CDR stem boundary positions. Carbon-
a backbone distance at those positions and the reference was obtained (Fig. S1A), and
compared to the closest carbon-a from the chain. In all but 2 cases, the boundary
positions were successfully labeled in every CDR in every reference. The 2 error
cases only failed in one position: problems in setting the C-terminal CDR-H3 H102
boundary position. One case occurred with an insert placement in H3 offsetting
residue by one position. The HMM correctly numbered the residues from position
H103 onward. The second case was evaluated manually (Fig. S1B) and determined to
be an unusual H3 conformation causing a proximity-based evaluation to fail, although
the HMM alignment had annotated the H102 residue correctly. Ignoring this odd
CDR, the error rate for the method was therefore 1 out of 1558 attempts. A smoothing
function, restacking any CDR border inserts into the CDR, was applied during CDR
identification.
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1.3 T-cell receptor repertoire sequencing

This study saw the developement of standardized set of optimized TCR sequencing
primers that were DNA multiplex compatible for sequencing up to 184 samples in a
MiSeq sequencing run, and could be adapted for greater depth.

T-cell receptor (TCR) diversity, a prerequisite for immune system recognition of
the universe of foreign antigens, is generated in the first two decades of life in the thy-
mus and then persists to an unknown extent through life via homeostatic proliferation
of naïve T cells. We have used next-generation sequencing and nonparametric statis-
tical analysis to estimate a lower bound for the total number of different TCR beta
(TCRB) sequences in human repertoires. We arrived at surprisingly high minimal
estimates of 100 million unique TCRB sequences in naïve CD4 and CD8 T-cell reper-
toires of young adults. Naïve repertoire richness modestly declined twoto fivefold in
healthy elderly. Repertoire richness contraction with age was even less pronounced for
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memory CD4 and CD8 T cells. In contrast, age had a major impact on the inequality
of clonal sizes, as estimated by a modified Gini–Simpson index clonality score. In par-
ticular, large naïve T-cell clones that were distinct from memory clones were found
in the repertoires of elderly individuals, indicating uneven homeostatic proliferation
without development of a memory cell phenotype. Our results suggest that a highly
diverse repertoire is maintained despite thymic involution; however, peripheral fitness
selection of T cells leads to repertoire perturbations that can influence the immune
response in the elderly.

A decline in the diversity of the T-cell receptor repertoire owing to thymic invo-
lution has been implicated as causing defective immune responses in the elderly. By
applying next-generation sequencing of replicate TCRB libraries from highly puri-
fied T-cell subsets, and using nonparametric statistical analysis, we obtain estimates
of repertoire richness in the young adult that are higher than previously reported.
Although contracting with age, the repertoire remains highly diverse. These data
challenge the paradigm that thymic rejuvenation is needed to maintain diversity and
prevent immune incompetence in the elderly. However, we observe an increasing in-
equality of clonal sizes with age even among naïve T cells. This clonal selection could
result in biased and possibly autoreactive immune responses.

1.3.1 Introduction

The ability of the adaptive immune system to respond to a wide variety of pathogens
depends on a large repertoire of unique T-cell receptors (TCRs). TCR diversity is
generated by the random and imprecise rearrangements of the V and J segments of the
TCR alpha (TCRA) and V, D, and J segments of the TCR beta (TCRB) genes in the
thymus. Thymic production of T cells is the sole mechanism to generate TCR diver-
sity. With the involution of the thymus with age, the generation of new naïve T cells
with new TCRs dwindles (1, 2). In the mouse, residual thymic activity provides an
ongoing source of naïve T cells, although not sufficient to maintain the compartment
size. In contrast, homeostatic proliferation of peripheral T cells is the predominant
mechanism of T-cell generation in the human adult (3). Given the dramatic decline
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in thymic T-cell production, thymic involution has been implicated in defective T-cell
responses with aging (4). Elderly individuals are more prone to develop complications
from infections; in particular, they are susceptible to newly arising infectious organ-
isms such as West Nile fever or severe acute respiratory syndrome (5, 6). Moreover,
immune responses to vaccination are dramatically reduced (7). Shrinkage in the size
of the naïve T-cell compartment and holes in the repertoire have been discussed as
potential causative factors in age-related impaired adaptive immunity (8). Indeed,
holes have been identified in the murine repertoire to contribute to the increased
morbidity from influenza infection (9, 10).

Pioneering early work on estimates of diversity of the human TCR repertoire was
based on sequencing a few hundred sequences and extrapolating to the scale of the
entire repertoire, yielding an estimated lower limit estimate of fewer than 1 million
different TCRB genes (11). Studies in more recent years have used highthroughput
sequencing to base estimates on greater sequencing depth. Warren et al. (12) mea-
sured 1 million different TCRB sequences in a peripheral blood sample. Robins et
al. (13) inferred the number of unseen TCRB genes from deep sequencing data by
applying a Poisson process model and estimated a diversity of 3–4 million TCRB
sequences in the total T-cell populations of two healthy donors.

Although high-throughput DNA sequencing provides the tool to gather extensive
datasets, estimates of TCR richness remain a challenge because clinical samples rep-
resent a small fraction of the 10^11 cells in the overall T-cell compartment. Richness,
the actual number of unique TCR sequences in a T-cell population, is dominated
by the infrequent species that are observed rarely or not at all. The major factors
affecting accurate identification of rare species in TCR repertoires are the number of
cells examined, the variable efficiency of PCR amplification, the expression levels of
TCR transcripts in different T cells, and sequencing error rates. In addition, periph-
eral blood T cells consist of a mixed population of naïve, memory, and effector CD4
and CD8 cells that differ markedly in diversity, with memory populations being less
complex than naïve populations.

The current study was designed explicitly to improve estimation of the TCR reper-
toire richness of stringently defined naïve and memory T cells. By sequencing multiple
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replicate TCRB libraries of cells from each T-cell subset and applying nonparametric
statistical analysis, we find that human TCR repertoires are an order of magnitude
more diverse than previously estimated. Despite significant age-related decreases in
richness, humans maintain high diversity during healthy aging. Strikingly, we find
age-associated changes in the distribution of clonal sizes, in particular in the naïve
compartment, which may reflect unevenness of homeostatic expansion with clonal ex-
pansion of some naïve T cells that equal or exceed clonal sizes of memory T cells. The
inequalities in clonal sizes could compromise the immune response to the majority of
antigenic epitopes while causing an increased responsiveness to selected few epitopes.

1.3.2 Results

Gene Segment Use and CDR3 Features in Young and Elderly TCRB Rearrange-
ments. In initially evaluating TCRB repertoires in young and elderly subjects we
compared the composition of TCRB gene rearrangements at the level of TCRBV
and TCRBJ gene segment use and the features of the CDR3-encoding junctional
nucleotides. Apheresis lymphocytes were obtained from four 20to 35and five 70to 85-
y-old healthy adults who were regular platelet donors. Naïve CD4 and CD8 T cells
were purified by cell sorting. We used a stringent definition of naïve cells (CD3+CD4+
or CD8+CCR7+CD45RAhighCD28+) and very restrictive gating to ensure purity.
Approximately 1.5–3 million sequence reads were obtained for each T-cell subset of
each donor (Table S1). TCRBV and TCRBJ gene segments were used at compara-
ble frequencies in the repertoires of naïve CD4 and CD8 T cells in young and old
individuals (Fig. S1A), whereas the memory repertoires of CD4 and, particularly,
CD8 T cells show variable and individual-specific gene segment use frequencies (Fig.
S1B). CDR3 sequences in the young and elderly were comparable in length and did
not show any definitive age-related features (Fig. S1 C and D).

High Richness of Naïve CD4 and CD8 TCRB Repertoires in Young and Elderly
Adults. To obtain sequence data to estimate global TCRB repertoire richness we used
the experimental design of analyzing a series of replicate libraries from independent
cell aliquots from each T-cell subset in each individual. These replicates allowed us
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Figure 1.5: Age is associated with a modest decrease in diversity of the TCRB reper-
toire. TCRB sequences were obtained from replicate samples of naïve (A and B)
and memory (C and D) CD4 and CD8 T cells. A lower bound of TCRB richness
was estimated by applying nonparametric statistics using the Chao2 estimator. Re-
sults are shown for nucleotide (A and C) and derived amino acid sequences (B and
D). Estimates were compared by Wilcoxon–Mann–Whitney test. Increase in age is
associated with a decline in richness of naïve CD4 and CD8 T cells; however, the
repertoire in the elderly remains highly diverse. Richness in CD4 and CD8 memory
T cells markedly differed, whereas the impact of age was negligibly small.
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to calculate repertoire richness by applying the “Chao2” estimator, a nonparametric
estimator of unseen species (14). The approach allows estimation of the extent to
which the full repertoire is covered and use of this information to determine a lower
bound of the total number of species in the repertoire. Because the Chao2 estimator
requires only a binary characterization of presence or absence of each clone in each
replicate library, it circumvents the challenges that arise in experimental designs using
only a single library and avoids confusing the effects of PCR amplification with the
presence of expanded T-cell clones. To not count possible sequencing errors as inde-
pendent sequences, we rejected single sequences as erroneous if a highly similar clone
of greater frequency was identified in the same library (see Materials and Methods
for the definition of similarity).

The lower bounds on TCRB gene richness obtained with this approach yielded
higher estimates than previous studies (Fig. 1). Young adults carried an estimated
60–120 million different TCRB genes, both in the CD4 and CD8 naïve T-cell reper-
toires. This high diversity in nucleotide sequences was reflected in a large functional
repertoire of TCR β chains with a lower boundary of ∼20 million different amino acid
sequences. To determine the robustness of our estimates, we used two approaches
to estimate confidence intervals. We applied the BCa variant of bootstrapping that
is designed for obtaining confidence intervals when the underlying bootstrap distri-
bution is not symmetric about its center (15). Second, we estimated the confidence
intervals using the approach originally developed by Chao (16). The 95% confidence
intervals with both methods were very narrow (Table S2).

Naïve TCRB repertoire richness declined significantly in the 70to 85-y-old adults
to a lower bound richness of 8–57 million different nucleotide sequences encoding
∼5–15 million TCR β-chain amino acid sequences (P = 0.008, Fig. 1 A and B).
Interestingly, the estimates in elderly CD4 and CD8 naïve T cells were similar despite
the greater decline in CD8 compared with CD4 naïve T-cell numbers with aging (17,
18).

CD4 and CD8 Memory T Cells Differ in TCRB Richness Independent of Age.
Memory cells have been selected from the naïve repertoire and clonally expanded in
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Figure 1.6: Increase in clonal expansions within naïve CD4 and CD8 T-cell compart-
ments with age. (A) The mean number of replicate TCRB sequences was used as an
estimate of approximate clonal sizes. The frequency distribution of clonal size bins
is shown as (log mean) ± SD of the four young and the five elderly adults. Nonde-
tectable clonal sizes were set at a frequency of 1 in 107. (B) Replicate samples of
naïve CD4 or naïve CD8 T cells were analyzed for the shared occurrence of TCRB se-
quences to estimate a clonality score, defined as the probability of two independently
identified sequences originating from the same clone. Clonality scores were compared
by Wilcoxon–Mann–Whitney test. The observed increase indicate inequality in clonal
sizes in the elderly naïve T-cell repertoire with age with increasing number of large
clones.
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response to antigen and are therefore expected to have a lower richness. With ad-
vancing age, the number of memory T cells increases and end-differentiated effector
CD8 T cells responsive to latent viruses, in particular CMV, accumulate (19, 20). In
initial experiments, we compared richness in CD8 central, effector memory, and end-
differentiated effector T cells in elderly individuals who did or did not have antibodies
to CMV. Richness of effector cell populations was lower than that of central memory
T cells and was further compromised in CMV-positive individuals (Fig. S2). To ex-
amine the effect of age independent of CMV-induced repertoire changes, we excluded
individuals who had positive CMV serology and excluded terminally differentiated
effector cells that are known to include clonally expanded effector T cells to latent
viruses. Richness in the CD4 memory compartment was about 50-fold lower than in
the naïve repertoire, with a lower bound of about 1 million different TCRB genes in
each individual. Surprisingly, richness showed negligible contraction with age (Fig.
1 C and D). CD8 memory T cells were 5to 10-fold less diverse than CD4 memory T
cells, irrespective of age.

Age-Dependent Clonal Expansion Within the Naïve T-Cell Compartment. In
addition to richness, distributions of clonal size could affect the functionality of the T-
cell repertoire. Owing to limitations in sampling (5 × 10^6 naïve T cells out of a total
repertoire of up to 10^11 cells per individual), estimates of clonal size distributions
are only reliable for clones above a clonal size threshold. In the young as well as
the old, most TCR sequences are derived from relatively small clones. In Fig. 2A,
the frequencies of clones are plotted against clonal sizes (defined as the number of
occurrences of identical sequences in the five combined samples of each subset). The
frequency distributions for clones above the detection threshold in the repertoires
of young and elderly individuals clearly differed, with a small number of naïve T-
cell clones showing a striking expansion with age. To compare the contributions of
expanded clones to the repertoires, we used a “clonality score” summary metric that
is independent of sequencing depth. This metric can be thought of as the probability
that two sequence reads selected at random from different replicate library pools will
be members of the same clone. Clonality scores in the elderly are approximately
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>100-fold higher for naïve CD8 T cells and >10-fold higher in CD4 T cells compared
with younger individuals (Fig. 2B).

Recent studies have identified public TCR sequences that are shared by unrelated
individuals (21, 22). Typically, public TCR sequences are those with simple junc-
tions, such as those that lack N-region nontemplated nucleotides (22). To exclude
that sequences detected more than once represented coincidentally identical TCR re-
arrangements rather than clonally expanded T cells, we analyzed sequences present at
frequencies of greater than 0.01% in elderly individuals. A TCR sequence was called
as public when found in more than one of the nine individuals studied. Twenty-three
of the 483 naïve CD4 and 81 of the 878 naïve CD8 frequent TCRB sequences in old
individuals were found in more than one individual (Table 1). In contrast, a higher
number of 92 of the 483 most frequent CD4 (P < 0.001) and 129 of 878 most fre-
quent CD8 TCRB sequences (P < 0.05) in the naïve repertoire of young individuals
are shared in different individuals. The data indicate that the observed increased
clonality in the elderly individuals represent true clonal expansions, whereas many of
the apparently clonally expanded sequences in the young repertoires may reflect the
presence of simple and public TCR rearrangements.

Effect of Age on Clonality in the Memory T-Cell Compartment. In contrast to
the age-associated increases in clonality that we observed in naïve CD4 and CD8 cell
compartments, there was little effect of age on the clonality of memory CD4 or CD8
T-cell populations. By virtue of memory T cells being present in larger clonal sizes
than naïve T cells, clonal size distributions could be examined for a larger fraction
of the repertoire. Distributions of clonal sizes were mostly identical for young and
elderly individuals and an age-related increase in clonal sizes was seen only for the
largest clones (Fig. 3A). Accordingly, clonality scores only slightly increased with age
(Fig. 3B). Notably, CD8 exceeded CD4 memory T cells in clonal sizes.

Clonally Expanded Naïve T Cells Express TCRB Sequences Distinct from Mem-
ory T Cells. Effector T cells can revert to a phenotype sharing cell surface markers
with naïve cells (23). To examine the possibility that the clonal expansions within the
naïve compartment represented a contamination with effector T cells masquerading
as naïve T cells, we analyzed all TCRB sequences that were found at more than 0.01%
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Figure 1.7: Greater clonality in the repertoire of CD8 than CD4 memory T cells.
Frequency distributions of categorized clonal size bins (A) and clonality scores (B)
for memory CD4 and CD8 T cells were determined as described in Fig. 2 for naïve
T cells. Nondetectable clonal sizes were set at the minimal frequency of 1 in 106
(A). Clonality scores were compared by Wilcoxon–Mann– Whitney test. Large clonal
expansions were more frequent in CD8 than in CD4 T cells with only minor influence
of age on clonality in both compartments.
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frequency in the naïve T-cell population for their representation in the memory popu-
lation. The reverse analysis was done for clonally expanded sequences in the memory
compartments. Results suggested that clonal expansions in the naïve compartment of
elderly individuals were not contaminating memory cells. For example, of 121 TCRB
sequences clonally expanded in the CD4 naïve T-cell compartment of one individual,
34 were unique for naïve T cells. Conversely, of 920 CD4 memory TCRB sequences,
449 were unique for memory cells. A similar distribution was seen for CD8 T cells:
215 of 379 clones originally identified in the CD8 naïve compartment were uniquely
found in that compartment, whereas 349 of 846 memory sequences were not seen at all
in naïve CD8 T cells. To further examine whether even the shared clonally expanded
populations can be predominantly assigned to one compartment, the frequency of
each of these shared sequences in each of the five naïve and five memory CD4 and
CD8 T-cell replicate samples was determined. The heat plots in Fig. 4 show the
frequency distributions of these clonally expanded CD4 and CD8 TCRB sequences
for the different naïve and memory cell samples from two elderly adults. Each row
represents one sequence and each lane an independent library of naïve or memory T
cells. Although sequences were selected to be present in naïve and memory T cells,
very few sequences were found at similar frequencies in both compartments. Impor-
tantly, TCRB sequences originally identified in the naïve compartment were virtually
absent in memory cell pools, suggesting that these clonal expansions originated from
naïve cells and maintained their naïve phenotype.

Mechanisms of Clonal Expansion Within the Naïve T-Cell Compartment. A likely
interpretation of the increasing inequality of clonal sizes with age is that the home-
ostatic proliferation of naïve T cells is associated with fitness selection. Clonally
expanded T cells might have a competitive growth advantage that in part could be
conferred by increased responsiveness to homeostatic cytokines. To test this hypoth-
esis, naïve CD8 T cells labeled with carboxyfluorescein diacetate succinimidyl ester
were cultured in the presence of IL-7 and IL-15. Cells that had undergone one or more
or two or more divisions after 7 d were purified and sequenced. TCRB sequences from
cultured T cells were analyzed for their presence in the replicate libraries of unstimu-
lated naïve T cells. T cells that divided in culture in response to cytokine stimulation
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Figure 1.8: Characterization of clonally expanded naive T cells. TCRB sequences
that had frequencies of ≥0.01% and were found in the naïve as well as the memory
compartment were analyzed for their frequencies in five independent naïve and mem-
ory replicate samples (samples A–E). Representative results of two elderly individuals
(one in A and the other in B) are shown as heat maps using the color scheme from
infrequent (blue) to frequent (red). The data indicate that T cells expanded in the
naïve and memory compartments are different.
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Figure 1.9: Increased responsiveness of in vivo expanded naïve CD8 T cells to cy-
tokineinduced proliferation. Naïve CD8 T cells were cultured with IL-7 and IL-15.
TCRB sequences from naïve CD8 T cells that had divided equal to or more than once
or twice were compared with sequences present in the peripheral blood repertoire of
the individual. Results from two individuals are shown. The proportions of sequences
from the cultured cells that were members of clones detected in four (purple), three
(blue), two (green), or one (red) replicates of the original noncultured T-cell libraries
from the peripheral blood are represented as cumulative bar graphs. The fastest-
proliferating cultured T cells (right column) show enrichment of large clones found in
four replicate libraries from the blood (P < 0.001).

show an increased proportion of clones that were expanded in the peripheral blood
(Fig. 5). The enrichment was more pronounced for T cells that divided more rapidly.
In the population that had divided two or more times, large clones (defined as being
found in four replicates of the original blood sample) are enriched compared with
small clones (defined as present in one replicate) (P < 0.001). In contrast, enrich-
ment was not obvious when T cells purified for high expression of the IL-7 and IL-15
cytokine receptors CD127 and CD215, respectively, were analyzed.



CHAPTER 1. ESTABLISHING REPERTOIRE ANALYSIS TECHNOLOGIES 39

1.3.3 Discussion

In this study we combined next-generation sequencing with a nonparametric statisti-
cal approach using the Chao2 estimator to estimate a lower bound for TCR richness.
We found a higher richness in CD4 and CD8 naïve T cells than previous studies. Even
though diversity contracts with age, we find that elderly individuals still possess a
diverse T-cell repertoire. However, we observe robust clonal expansion with age in
the naïve compartments, suggesting that homeostatic proliferation is associated with
fitness selection. Finally, we found lower richness in CD8 than in CD4 memory cells,
a difference that was preserved during aging. Thymic involution is the most dramatic
age-related change in the human immune system. Understanding whether the T-cell
repertoire can be maintained in the absence of thymic activity and whether repertoire
contraction contributes to the immune defects in the elderly is critical for designing
possible interventions. Conclusions for the human repertoire from animal models are
unreliable because the size of the T-cell compartment and mechanisms and kinetics
of T-cell homeostasis are fundamentally different in humans and mice (3).

Whether thymic T-cell generation in humans is of any quantitative importance
for the steady state of T-cell populations after the end of the growth period has been
controversial. Some residual thymic tissue persists in elderly humans (24); however,
even in the lymphopenic host after chemotherapy or bone marrow transplantation or
in HIV patients after initiation of highly active antiretroviral therapy, resurgence of
thymic activity does not occur in the majority of individuals older than 40–50 y (25).
In the healthy adult, TCR excision circle (TREC) byproducts of TCR rearrangement
that do not replicate are the best surrogate marker for thymic activity. Mathematical
modeling has suggested that the age-related decline in TRECs is best explained by
cell loss compensated by homeostatic naïve T-cell turnover rather than by declining
thymic efflux. Thymic activity may not play a significant role in the maintenance of
TCR diversity in adult life (26).

High-throughput DNA sequencing now enables extensive measurement of TCR
populations, but estimation of TCR repertoire richness from sequencing of blood
samples has remained a challenge. Here, we combined next-generation sequencing
with a nonparametric statistical approach to estimate richness. The use of multiple
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replicate sequencing libraries generated from independent samples of T cells for each
subset enabled us to identify the rare sequences that are critical for estimates of
the number of unobserved species and overall TCR richness in the repertoire. We
corrected for sequencing errors by excluding sequences that were related to detected
peaks in sequence space. In contrast to previously used corrections, our approach does
not eliminate essentially all rare clones, but it does still give a conservative appraisal
of diversity.

Based on our estimate of 100 million TCRB gene rearrangements and considering
that each TCR β-chain in the naïve T-cell repertoire combines with about 25 TCR α-
chains (11), the average clonal size of a naïve cell would be about 100–200 cells. This
approximation is of the same magnitude as predicted from the dilution of TREC-
bearing T cells in the naïve repertoire. In the neonate, naïve T cells proliferate
to fill the compartment (27). Recent thymic emigrants in the newborn undergo
three to four divisions in the periphery after TCRA gene rearrangement, thereby
establishing a minimal clonal size of 10 cells (28). TREC frequencies decline further
in subsequent years, suggesting that naïve T cells undergo approximately three more
divisions during the growth period in the presence of thymic activity, to give a final
average naïve T-cell clonal size of about 100 cells.

Our analysis does not address directly whether a decline from about 20 million to
10 million TCR β-chain sequences leads to immune defects or holes in the repertoire
in the elderly. Tetramer studies in noninfected individuals have suggested that the
frequency of T cells specific for many exogenous viral peptides, or self-peptides, is on
the order of 1 in 1 million (29), suggesting that the estimated elderly repertoires of
more than 100 million TCR α-β dimers could be diverse enough to recognize most
peptides bound to a given MHC molecule and avoid frank “holes” in the repertoire.

A striking age-related change in our studies was an increase in T-cell clonality in
the naïve repertoire. The contribution of clonally expanded T cells to the observed
repertoire increased by a factor of >100 for naïve CD8 and of >10 for naïve CD4 T
cells compared with young adults. Analysis of these expanded clones showed that the
clones in the naïve subsets were distinct from those in the memory compartments,
although many of them were present in clonal sizes that were comparable to those
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of memory cells. If these naïve clones derive from uneven homeostatic proliferation,
they maintain a naïve phenotype, in contrast to findings in mice, in which naïve T
cells undergoing homeostatic proliferation tend to acquire a memory-like phenotype
(30, 31).

Based on the limited number of cells that can be sampled in humans, our clonality
index only allows conclusions on the impact of clones that are above a certain size.
However, for naïve T cells age-associated increases were observed for the entire range
of clonal sizes that could be assessed. This observation is consistent with the inter-
pretation that homeostatic proliferation during aging is associated with increasing
unevenness in clonal size distributions of the entire repertoire owing to peripheral se-
lection. In support of this interpretation, we have recently performed an agent-based
stochastic in silico simulation of repertoire complexity under homeostatic prolifera-
tion and have found only a minimal contraction in diversity over a human lifetime, as
long as peripheral fitness selection during homeostatic proliferation can be ignored;
even with no thymic activity after age 20 y and 90% shrinkage of the naïve T-cell
compartment size (32). Depending on the initial clonal size, increasing variance in
clonal abundances will not necessarily lead to clonal extinction. In our data, naïve
CD8 T cells had a much higher clonality score than naïve CD4 T cells; however, rich-
ness in both compartments was very similar, suggesting a higher variance in clonal
sizes in CD8 T cells (Figs. 1 and 2). A large number of homeostatic T-cell divisions
or, as explored in our in silico simulation, a rather dramatic co-occurrence of selective
forces is required before homeostatic proliferation leads to contraction in richness.
However, the inequalities in clonal sizes with some large and many very small clones
may generate a less complex T-cell response to peptide antigens, which may be more
important than the fewer TCRs available in the repertoires of older compared with
younger individuals. Such an unevenness cannot be improved by restoring thymic
T-cell generation (32).

Age-associated skewing in clonal size distributions explains why some prior studies
have observed a higher decline in diversity with aging. Because sequencing depths in
most previous studies were not sufficient and/or the analytical design did not take into
account increasing inequality in clonal size distributions, estimates of richness were
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not reliable. Based on this model, our previous report of a stable TCR repertoire up
to the seventh decade of life with a sudden change thereafter indicates an occurrence
of increasing T-cell clonal expansions late in life (33). This interpretation is also
consistent with observations in a nonhuman primate model (34).

Homeostatic proliferation and survival of naïve T cells are thought to require the
recognition of self-antigen in the presence of homeostatic cytokines (30, 35). Inequal-
ities in clonal sizes could therefore reflect a peripheral selection based on cytokine
responsiveness and/or self-recognition. In support of this interpretation, in vitro cul-
ture of naïve T cells in the presence of homeostatic cytokines, but absence of foreign
antigens, selected for TCR sequences clonally expanded in vivo. Homeostatic prolifer-
ation associated with a peripheral selection may therefore result in a more autoreactive
repertoire (36). This may explain why lymphopenia-induced homeostatic prolifera-
tion confers an increased risk for autoimmunity (37, 38) and supports the model that
increased homeostatic proliferation and associated changes in the repertoire found in
patients with rheumatoid arthritis may predispose for the disease (39–41).

Surprisingly, and in contrast to naïve T cells, the impact of age on the memory T-
cell repertoire was minimal. Although the size of the memory compartment is known
to increase with age, richness did not change significantly, and clonality increased only
for the very largest clones. This observation is particularly surprising for CD8 T cells
where the terminally differentiated effector T-cell population tends to increase at the
expense of central and effector memory T cells (17). It should be noted, however, that
we have excluded individuals who were CMVpositive to analyze age effects without
the confounding factor of CMV-induced repertoire changes.

Our data highlight striking differences in the repertoires of CD4 and CD8 T mem-
ory cells, independent of age. Richness was higher in CD4 memory than in CD8 T
cells, whereas clonality was higher in CD8 memory T cells. The prominent clonality
in CD8 memory T cells is consistent with previous spectratyping studies demonstrat-
ing clonal peaks in the CD8 memory repertoire (42). Our studies now show that the
difference between human CD4 and CD8 memory T cells is not limited to clonally
expanded CD8 T cells, but also includes a globally decreased richness of the entire
CD8 memory repertoire. Given that richnesses in naïve CD4 and CD8 T cells are
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approximately equal, our data suggest that formation or maintenance of the memory
repertoire is more constrained for CD8 than for CD4 T cells. Future studies of the
repertoires of antigen-specific T cells after vaccination or infection in humans will be
required to further explore the consequences of T-cell subset-specific repertoire con-
tractions and the contribution of clonal expansions to the increased vulnerability of
the elderly to common pathogens.

1.3.4 Methods

TCRB cDNA libraries were generated from five replicate samples of FACSsorted
naïve and memory CD4 and CD8 T cells from apheresis samples of young and elderly
healthy adults and sequenced with an Illumina Miseq sequencer. TCRB repertoire
richness was determined by applying the Chao2 nonparametric estimator of the lower
bound of species richness in a population after correcting for possible sequencing
errors and eliminating TCRB sequences that are close to peaks in sequence space.
A clonality score, adapted from the Gini–Simpson index, was determined using the
lymphclon inference algorithm. A detailed description of the experimental design and
procedures and the statistical analysis is given in SI Materials and Methods. Primers
are described in Table S3.

Study Subjects. Platelet donor apheresis lymphocytes were obtained from young
(aged 20–35 y) and elderly (aged 70–85 y) adults from the Stanford Blood Center.
All individuals were healthy, regular platelet donors without a history of autoimmune
disease, diabetes mellitus, or chemotherapy and were analyzed for their CMV serology.
Informed consent for research use of blood samples was provided by all participants.

Cell Purification and RNA Extraction. T cells were enriched by negative se-
lection using the human T-cell RosetteSep enrichment kit (StemCell Technologies)
and then stained with FITC-CD3(BioLegend), V450-CD4-(Affymetrix eBioscience),
PECy7-CD8-, PerCP/Cy5.5-CCR7(BioLegend), PE-CD28and APC-CD45RA(BD
Biosciences) antibodies as well as Live/Dead Fixable Aqua Dead cell stain dye
(Life Technologies), followed by cell sorting using a BD Aria3 cell sorter to ob-
tain naïve CD4 T cells (CD3+CD4+ CCR7+CD45RAhighCD28+), naïve CD8 T
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cells (CD3+CD8+ CCR7+CD45RAhighCD28+), memory CD4 T cells (CD3+CD4+
CD45RA–), and memory CD8 T cells (CD3+CD8+ CD45RA–). For young individ-
uals, five replicates with 1 × 106 cells per aliquot of naïve CD4, naïve CD8, and
memory CD4 T cells and five replicates with 0.25 × 106 per aliquot of memory CD8
T cells were collected. For naïve CD8 T cells in elderly individuals, five replicates of
0.25 × 106 cells were collected; cell numbers for all other populations were the same
as in young individuals. In additional experiments, central memory (CD3+ CD8+
CCR7+ CD45RA–), effector memory (CD3+CD8+CCR7–CD45RA–), and terminal
effector memory (CD3+CD8+CCR7–CD45RAhighCD28–) CD8 T cells from CMV-
positive and CMV-negative elderly individuals were sorted and five replicates with
0.2 × 106 cells per aliquot of each CD8 T-cell population were collected. In two el-
derly individuals, CD4+CD25highCD127low (Treg) and CD127+ and CD215+ naïve
CCR7+CD45RAhighCD28+ CD8+ were purified for analysis. RNA was extracted
using AllPrep DNA/RNA mini kit (Qiagen). cDNA was generated using SuperScript
III reverse transcription kit (Invitrogen) with random hexamer oligonucleotides.

Cytokine-Mediated in Vitro T-Cell Expansion. T cells were stained with V450-
CD4-, PECy7-CD8-, APC-CD45RA-, and PerCP/ Cy5.5-CCR7antibodies, followed
by cell sorting to obtain naïve CD8 T cells (CD3+ CD8+ CCR7+ CD45RAhigh).
Cells were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE) and
cultured in vitro in the presence of 10 ng/mL IL-15 and 10 ng/mL IL-7 (Peprotech).
After 7 d of culture, T cells were stained with V450-CD4, APC-CD3, and PECy7-
CD8, followed by cell sorting to obtain T cells (CFSElowCD8+ CD3+) that had
divided in response to cytokine stimulation. RNA was extracted using RNA micro
kit (Qiagen). cDNA was generated using SuperScript VILO MasterMix (Invitrogen).

Generation of T-Cell Receptor Beta Gene Libraries. To amplify rearranged T-
cell receptor beta (TCRB) genes from cDNA, 39 forward primers, each specific to
one or two functional TCRBV segments, and one reverse primer specific to the CB
segments were designed based on the repertoire of TCR germ-line segments present
in the ImMunoGeneTics (IMGT) database (www. imgt.org) (Table S3). A 12-bp
nucleotide unique “barcode” sequence was inserted in the reverse primer between the
CB sequence and Illumina universal reverse sequence. First PCR amplification was
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Table 1.2: TCRb-specific Illumina MiSeq NGS sequencing primers with poly-N de-
phasing, DNA multiplex identifiers, and MiSeq partial Sequencing Adaptors. Note
that complete sample prep requires secondary amplification with PE1/PE2 extension
primers.
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performed using a Multiplex PCR kit (Qiagen) with 3 μL of template cDNA, 50 pmol
of CB primer, and 1.28 pmol of each V primer per 25 μL of reaction for 15 min at
95 °C 15, followed by 30 cycles of 94 °C for 30 s, 59 °C for 90 s, and 72 °C for 60
s, then 72 °C for 10 min. Full-length Illumina sequencing adaptors were added in a
second 15-cycle PCR with 0.5 μL of the first PCR product and 10 pmol of forward
and reverse Illumina adaptor primers. The final PCR products were pooled in equal
amounts and separated on 2% agarose gel. PCR products of 350–450 bp were excised
and extracted using a Qiaquick Gel Extraction Kit (Qiagen).

Illumina Sequencing and Sequence Data Analysis. TCRB libraries were sequenced
with an Illumina Miseq sequencer (2 × 250-bp paired-end reads). Each paired-end
read was first trimmed to 150 bp on each side and then assembled into a single
sequences using COPE (1). The reads were then mapped to reference sequences in the
IMGT information system (www.imgt.org) using modified IgBLAST. The TCRBV
and TCRBJ regions for each sequence were annotated to best-matching sequences.
CDR3 sequences were identified as nucleotide sequences between the second conserved
cysteine at the 3´ end of the VB gene segment and the conserved phenylalanine at the
5´ portion of the JB segment. Sequences successfully mapped to known VB and JB
segments and containing an in-frame CDR3 sequence and JB segment were accepted
for further analysis.

TCRB Repertoire Richness Statistics. We used multiple replicate libraries gen-
erated from distinct aliquots of T cells for each subset and applied the Chao2 non-
parametric estimator of the lower bound of species richness in a population (2, 3).
The Chao2 approach is a standard tool in ecology and intends to make use of the
information provided by all species in a dataset, rare or not. Instead of excluding
all singleton sequences, as was done in previous studies, we corrected for sequencing
errors by examining each putative clone S that appeared only in one replicate and
decided whether it could be a sequencing error with respect to another clone using the
following rule set: S is considered a sequencing error if another clone in the data from
that T-cell subset (i) shares the same V and J annotations, (ii) has the same CDR3
length, (iii) has a Hamming distance of two or one to S in the CDR3 nucleotides,
and (iv) has higher abundance. If we find another clone satisfying all four criteria,
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then the putative clone S is rejected as a clone. Computing Chao2 entails examining
the replicates for clones that are found in multiple replicates and contrasting this
quantity to the number of clones found in only one in a mathematically informed
manner. Chao2 essentially contrasts these two quantities to estimate the extent to
which we have covered the full repertoire and uses that to inform how many species
there are in total. We used two strategies to estimate confidence intervals of the
Chao2 estimator. First, we have produced an empirical confidence interval based
on bootstrapping. We have used the BCa bootstrap from DiCiccio and Efron (4)
that is a variant of bootstrapping designed in part for confidence intervals when the
underlying bootstrap distribution is not symmetric about its center. Following stan-
dard technique, we converted the replicated data into sufficient statistics necessary
to compute the Chao2, in particular, the per-clone incidence frequencies across the
replicates (i.e., the number of replicates that contain the clone). We performed sam-
pling with replacement on this sufficient statistic over all clones. In our bootstrap
estimates, we performed 1,000 bootstrapping iterations for each estimate. Second, we
estimated the confidence intervals using the formula developed by Chao (2). Fewer
cells were available for analysis in our CD8 memory T-cell samples compared with
the CD4 memory cells (5 replicates of 250,000 each vs. 5 replicates of 1,000,000 each);
therefore, we ran simulations to evaluate the robustness of our estimates of richness,
given the differences in sampling. We generated an underlying repertoire with an
uneven Zipf distribution (power = -0.5), spread across 1 million clones. From this
repertoire, we sampled 5 replicate libraries, for 250,000 virtual cells per replicate,
equivalent to the number of CD8 memory cells studied in our experiments. To simu-
late PCR amplification, each virtual cell was subject to a standard lognormal scaling.
Across each of the 100 random iterations of these noisy samplings, we calculated a
Chao2 repertoire estimate of richness. The resulting estimates of a mean of 924,400
with a SD of 1756 were very close to the true value of 1 million different TCRs. For
comparison, we also performed simulations using sampling depths equivalent to those
obtained for CD4 memory T-cell experiments (5 replicates of 1 million cells each).
This resulted in a mean of 945,800 and a SD of 800, demonstrating the robustness of
the approach to variation in sample sizes.
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Clonality Statistics. The “clonality score” was recently developed as a measure
to estimate contribution of clonally expanded sequences within a repertoire, as an
adaptation of the Gini–Simpson index modified for application to multiple replicate
sequencing datasets and corrected for covariance between replicate sequence libraries
(5, 6). To perform inference of the clonality score, we used the lymphclon pack-
age available on R CRAN to perform accurate estimation of this quantity on the
repertoires. The lymphclon inference algorithm explicitly takes advantage of multiple
replicated sequencing experiments by modeling the experimental covariances and the
per-replicate amplification differences. A description of this methodology is available
in ref. 7.
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1.4 Single cell receptor and phenotype sequencing

Although each T lymphocyte expresses a T-cell receptor (TCR) that recognizes cog-
nate antigen and controls T-cell activation, different T cells bearing the same TCR
can be functionally distinct. Each TCR is a heterodimer, and both a and b-chains
contribute to determining TCR antigen specificity. Here we present a methodology
enabling integration of information about TCR specificity with information about T
cell function. This method involves sequencing of TCRα and TCRβ genes, and am-
plifying functional genes characteristic of different T cell subsets, in single T cells.
Because this approach retains information about individual TCRα-TCRβ pairs, TCRs
of interest can be expressed and used in functional studies, for antigen discovery, or
in therapeutic applications. We apply this approach to study the clonal ancestry and
differentiation of T lymphocytes infiltrating a human colorectal carcinoma.

1.4.1 Introduction

Single-cell analysis can reveal important functional insights that are masked in bulk
analysis of cell populations(1–3). Recent technological advances have improved our
ability to query expression of multiple genes in single cells simultaneously, thereby
helping to resolve the complexity inherent in heterogeneous populations of cells in-
cluding T lymphocytes. These technologies include time-of-flight mass cytometry
(CyTOF), RNA sequencing (RNA-seq) and quantitative RT-PCR(4–7). However,
these technologies have not thus far been applied in a high-throughput manner to
include the most distinctive genes a T cell expresses: the genes that encode the TCR.
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The TCR, which determines which complexes of antigenic peptide–major histo-
compatibility complex (MHC) the T cell responds to, plays a major role in controlling
the selection, function and activation of T cells(8). Because the TCR expressed in
each T cell is composed of αand β-chain genes that are derived by somatic V(D)J re-
combination, the TCR repertoire in any given individual is tremendously diverse(9).
Therefore, the TCR also serves as a unique identifier of a T-cell’s ancestry, because it
is likely that any two T cells expressing the same TCRαβ pair arose from a common
T-cell clone.

There is great potential synergy in pairing TCR sequences (which can reveal
information about T-cell ancestry and antigen specificity) with information about
expression of genes characteristic of particular T-cell functions. Integrating these two
types of information can allow one to comprehensively describe a given T cell. For
example, it is becoming clear that T cells responding to different antigens can have
very different phenotypic and functional properties, even if these antigens are derived
from the same pathogen(10). The ability to link T-cell function and TCR specificity
will enable one to determine which functional subsets of T cells have undergone clonal
expansion and which clones exhibit plasticity, ultimately give rise to progeny that
express the same TCRαβ heterodimers, but exhibit diverse functional phenotypes. It
will also allow identification of TCRαβ heterodimers expressed in individual T cells
of interest without expansion of the T-cell population in vitro, which can result in
loss of functional integrity. These heterodimers can be invaluable in studies designed
to discover antigens11 or in therapeutic applications(12).

Here we present an approach enabling the simultaneous sequencing of TCRα and
TCRβ genes and amplification of transcripts of functional interest in single T cells.
This approach enables both TCR sequencing and extensive phenotypic analysis in
single T cells, linking TCR specificity with information about T-cell function.

1.4.2 Results

Strategy We and others have successfully sequenced TCR genes from single, sorted
T cells using a nested PCR approach followed by Sanger sequencing(13–15). Here we
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devise a strategy enabling simultaneous sequencing of rearranged TCR genes and mul-
tiple functional genes in single, sorted T cells through deep sequencing. In addition to
enabling the analysis of multiple functional genes in parallel with TCR sequencing,
this approach has several advantages over previous TCR sequencing methods that
utilize Sanger sequencing(13–15). First, it is efficient (5,000–10,000 cells can be se-
quenced in one sequencing run) and less labor intensive as individual PCR products
do not need to be purified and sequenced separately. Second, it is also very accurate
as consensus sequences are determined from a high number of independent sequenc-
ing reads (often exceeding 1,000) per TCR gene, essentially eliminating the effect of
sequencing error. Third, it is well-established that individual T cells can express two
TCRα genes(16,17). Our approach uniquely enables sequencing of multiple TCRα
genes from most single T cells and determination of which of these are functional.

In our method, single T cells are sorted into 96-well PCR plates (Fig. 1a). An
RT-PCR reaction is done using 76 TCR primers and 34 phenotyping primers (Sup-
plementary Fig. 1 and Supplementary Tables 1–3). The products are then used in
a second PCR reaction—either one that uses nested primers for TCR genes or one
that uses nested primers for phenotypic markers, including cytokines and transcrip-
tion factors. A third reaction is then performed that incorporates individual barcodes
into each well (Supplementary Fig. 2)(18). The products are combined, purified and
sequenced using the Illumina MiSeq platform. The resulting paired-end sequencing
reads are assembled and deconvoluted using barcode identifiers at both ends of each
sequence by a custom software pipeline to separate reads from every well in every plate
(Supplementary Note). The resulting sequences are then analyzed using a program
called VDJFasta19, which we have adapted to resolve barcodes and analyze sequences
with a customized gene-segment database that includes relevant transcription factors
and cytokine genes. The population of annotated sequences above background levels
in each well is then measured (see Online Methods for details on data processing). For
TCR sequences, the CDR3 nucleotide sequences are then extracted and translated.
For phenotypic parameters, the presence or absence of a transcript in a particular
well is scored.
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Figure 1.10: Strategy for single-cell TCR sequencing and phenotyping, and deter-
mination of TCR-sequencing efficiency. (a) Strategy for simultaneous TCR-sequence
determination and phenotyping of single, sorted T cells. Single T cells were sorted
into 96-well plates. The initial RT-PCR reaction (reaction 1) uses 76 TCR primers
and 34 phenotyping primers. An aliquot of the product of reaction 1 is used for two
separate second nested PCR reactions (reaction 2), one for TCR sequencing and one
for phenotyping. Using an aliquot of reaction 2 product as a template, a third PCR
reaction is performed that incorporates individual barcodes into each well and enables
subsequent sequencing using the Illumina MiSeq platform. For TCR sequencing, the
third reaction can be split into separate TCRα and TCRβ reactions (for optimal effi-
ciency), or the two TCR chains can be included in a single reaction. The products of
reaction 3 are then combined and sequenced using the Illumina MiSeq platform. (b,c)
Accuracy and efficiency of TCR sequencing using this method. (b) Strategy used to
validate TCR sequencing. Into each 96-well test plate, individual human peripheral
blood T cells were sorted into 80 wells (gray). Single Jurkat T cells were sorted into
eight other wells (red), and the remaining eight wells (black) were left empty (blank).
For sequencing of these test plates, reaction 3 was initially performed separately for
TCRα and TCRβ (split). It was also repeated with TCRα and TCRβ amplified to-
gether in the same reaction (combined). (c) Efficiency of TCRα and TCRβ sequencing
in split or combined formats. Plate 1 contained 80 single CD45RA+CD4+TCRαβ+
T cells, and plate 2 contained 80 single CD4+ or CD8+ TCRαβ+ T cells sorted from
peripheral blood of the same healthy human donor. Identical Jurkat sequences were
obtained from all Jurkat wells. No sequences were obtained from any empty wells.
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TCR sequencing validation To validate our TCR sequencing methodology, 80 sin-
gle CD45RA+CD4+TCRαβ+ T cells were sorted from peripheral blood of a healthy
human donor into one 96-well plate, and 80 single CD4+ or CD8+TCRαβ+ T cells
were sorted from the same sample into a second plate. CD45RA marks naive CD4+
T cells that are not expected to have undergone much clonal expansion(20). The Ju-
rkat human T-leukemic cell line was used as a positive control(21). Into both plates,
individual Jurkat T cells were sorted into eight wells, and eight wells were left blank
(Fig. 1b). These plates were initially subjected to the first reaction containing 74
TCR variable (V)-region primers, 2 constant (C)-region primers and 34 phenotyp-
ing primers. Phenotyping primers were included in the first reaction to demonstrate
that the inclusion of these primers does not interfere with TCR sequencing. The
subsequent nested PCR and barcoding reactions were then performed according to
the protocol shown in Figure 1a; reaction products were subsequently sequenced and
analyzed.

Out of 160 wells into which single, peripheral blood αβ T cells were randomly
sorted, productive TCRβ sequences were successfully obtained in 147 wells (92%),
and at least one productive TCRα sequence was found in 139 wells (87%) wells (Fig.
1c and Supplementary Table 4). Productive TCR genes have been joined in the proper
reading frame by V(D)J recombination without premature stop codons, enabling ex-
pression of a complete TCRα or β chain. Paired, productive TCRαβ sequences were
found in 131 (82%) wells. Identical Jurkat TCRαβ sequences were found in 16/16 wells
into which Jurkat cells were sorted but in no other wells on the plates (Fig. 1c and Sup-
plementary Table 4). There were no sequences above background found in the wells
into which no cell was sorted (see Supplementary Fig. 3 for details regarding back-
ground). The absence of sequences from wells with no cells and the presence of Jurkat
sequences only in the 16 designated Jurkat wells indicates that cross-contamination of
wells was minimal. Optimal TCR-sequencing efficiency was obtained when the third
PCR reaction (barcoding) was done in two separate plates—one for TCRα and one
for TCRβ; there was a only a marginal loss of efficiency when these reactions were
done together in one plate (Fig. 1c).
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Figure 1.11: Accuracy of phenotypic analysis. (a–f) Peripheral blood T cells were
stimulated for 3 h with PMA and ionomycin, and expression of the indicated cytokines
was analyzed by cytokine secretion assays that do not require cell fixation: IFN-γ (a),
TNF-α (b), IL-2 (c), IL-10 (d), IL-13 (e), IL-17 (f). Sixty single CD45RO+CD4+
T cells that were clearly positive for the indicated cytokine protein and 36 single
CD45RO+CD4+ T cells that were clearly negative for the indicated cytokine protein
were sorted, and expression of the same cytokine genes were measured by the method
depicted in Figure 1a. Seventeen independent phenotypic parameters were assayed
in single, sorted cells, and the phenotypic parameter on which cells were sorted is
indicated in red. Heatmaps indicate read count of each parameter (x axis) within
each particular well (y axis). Scale indicates number of reads obtained from a given
well for the indicated parameter. Wells indicated in blue did not display any reads
that reached threshold. (g) Unstimulated CD4+ T cells were sorted based upon
CD25 expression to validate phenotypic analysis for FOXP3. Sixty single CD4+ T
cells with high CD25 expression and 36 single CD4+ T cells that were negative for
CD25 expression by flow cytometry were sorted and assayed as in a–f. (h) Expression
of CD25 and FOXP3 protein was measured by flow cytometry. Cells from the same
donor were fixed and stained with anti-CD25 and anti-FOXP3 antibodies. Histograms
on right depict FOXP3 expression in gated CD25high and CD25− populations.
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T cells often express two recombined TCRα genes(16,17). Sanger sequencing can-
not be performed on heterogeneous products, therefore, methods that rely on Sanger
sequencing cannot easily identify multiple TCRα chains from a single cell(15). Fur-
thermore, the presence of multiple TCRα chains can hinder the efficiency and accuracy
of sequencing in methods based on Sanger sequencing. Because our strategy employs
deep sequencing, wherein each template is amplified and sequenced independently,
we can readily derive multiple TCRα sequences from individual cells. On average (as-
suming 20 96-well plates on a single sequencing run), we obtain ~5,000 total TCRα or
TCRβ sequences with the same set of barcodes, specifying they are derived from the
same well. To distinguish between TCR sequences that differ owing to a sequencing
and/or PCR error and those that are probably derived from different TCR genes,
our software determines a cutoff value in similarity based upon the assumed rate of
sequencing and/or PCR error(22). All sequences exceeding this value (e.g., they are
very similar to one another) are assumed to derive from the same TCR gene and
a consensus sequence is determined. We can therefore accurately identify multiple
TCR gene sequences among a heterogeneous group of sequences tagged with the same
barcode.

We detected multiple TCRα chains in 80/139 (58%) of wells containing at least
one productive TCRα chain sequence (Supplementary Table 4). In contrast, we did
not detect multiple TCRβ chains or multiple nonproductive TCRα chains in any wells.
This indicates that cross-contamination of wells or the erroneous sorting of two cells
into wells is minimal. With the exception of designated Jurkat wells, there were no
repeated TCRs present in the first plate containing 80 naive CD45RA+CD4+ T cells.
This is consistent with the expectation that naive T cells have undergone minimal
clonal expansion and therefore it is unlikely that two identical clones would be in
the population of 80 cells sorted into a single plate. In our second plate, which con-
tained 80 total (naive and non-naive) TCRαβ+ T cells, we detected four repeated
TCR sequences in 11 different wells (Supplementary Table 5). All these repeated T
cells were scattered across the plates and not within close proximity to each other,
suggesting that the repetition did not arise as a result of cross-well contamination.
For one TCRβ sequence that was repeated across four wells (CAWTLGGNEQFF),
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Figure 1.12: TCR sequencing and phenotypic analysis of single human TILs. (a) T
cells were sorted and analyzed using the procedure from Figure 1a. PCA to depict phe-
notypic + T cells from tumor (blue) and adjacent colon (red) of a single patient, and
from peripheral blood of another healthy diversity of PMAplus ionomycin-stimulated
CD4 donor (black). PCA parameter loadings are shown in Supplementary Figure
7. Each dot represents a single T cell. (b) Top two panels: 17-parameter (param-
eters listed on x axis) phenotypic analysis of stimulated CD4+ T cells from tumor
(top) and colon (bottom) of a single patient. Individual T cells are grouped by TCR
sequence; each color on the bar above the heat maps represents a distinct TCR se-
quence. (c) Hierarchical clustering of different cells by phenotype, with expanded
(yellow) and unexpanded (black) T-cell clones (read out by TCR sequence) indicated
in the horizontal bar above the heat map.
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each well contained sequences of the same two productive TCRα genes. For a TCRβ
(CASSYGDPGGLDGELFF) that was repeated across three wells, the same produc-
tive TCRα gene was detected in all three wells. Additionally, within two of these
three wells, an identical nonproductive TCRα gene was detected. These findings con-
firm that detection of two TCRα rearrangements in a particular cell is repeatable and
reliable, and not likely to be the result of contamination or error.

We detected two productive TCRα genes in 19/139 (14%) wells containing at
least one productive TCRα chain (Supplementary Table 4). This reinforces the im-
portance of single-molecule sequencing methods like ours to determine true TCRαβ
heterodimers. Methods that can detect only one TCRα gene per cell may falsely iden-
tify a TCRαβ heterodimer because in cells expressing two productive TCRα genes,
only one TCRα gene product is thought to be expressed at the T-cell surface(16).
Further, in cases where only one TCRα chain is detected in a particular cell, there is
a possibility that another productive TCRα chain is present but not detected. This
possibility is unlikely with our methodology given its efficiency and the fact that we
detected all variable (V)-regions in our TCRα data even in the presence of other
TCRα chains within the same T cell (Supplementary Fig. 4). However, due to this
possibility, all TCRs derived through this method that are reconstituted for use in
functional studies should be validated.

Phenotyping validation In addition to TCR sequencing, this method enables one
to simultaneously query multiple phenotypic parameters from single T cells. In our
phenotyping panel, we included multiple cytokines and transcription factors that in-
fluence T-cell function and define certain T-cell subsets (Supplementary Table 2).
Our method is uniquely enabling in this regard, as other methods for measuring ex-
pression of cytokines and transcription factors (e.g., flow cytometry) generally require
cellular fixation, which compromises the integrity of nucleic acids and makes it diffi-
cult to perform TCR sequencing. Furthermore, cellular fixation–based methods for
detecting transcription factors are arduous and unreliable, even compared to methods
for detecting intracellular cytokine expression(23).

For example, the functional diversity of CD4+ T cells is dependent upon ex-
pression of various transcription factors(24). Some of these transcription factors are
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Figure 1.13: TCR sequencing and phenotypic analysis of FOXP3+ TILs. (a) Clonal
expansion (indicated in horizontal bar above heatmaps) and phenotype (parameters
indicated on right column) of FOXP3+RORC− T cells and FOXP3+RORC+ T
cells. (b) Phenotypic analysis of FOXP3− T cells that share TCR sequences with
FOXP3+ populations (total numbers of cells analyzed are indicated in parentheses).
(c) Frequency of cells within each indicated population of T cells (x axis) expressing
phenotypic markers indicated (right). (d) Model suggested by analysis of TILs. A
single T cell is activated by antigen and expands to give rise to FOXP3+RORC+
IL-17–producing T cells, which eventually lose expression of FOXP3 to give rise to
FOXP3−RORC+ IL-17–producing T cells. FOXP3+RORC− T cells do not show
evidence of clonal expansion, and are thus unlikely to arise from FOXP3+RORC+
cells that lose expression of RORC.
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termed “master regulators” and their expression has been used to specify particular
T-cell lineages. We included T-bet, GATA3, RoRγT (RAR-related orphan receptor
gamma T, which is encoded by RORC), BCL-6 and FOXP3 (Forkhead box P3), which
have been used to specify helper T type 1 (Th1) cells, Th2, Th17, follicular helper
(TfH) and regulatory T (Treg) cells, respectively25,26, in our phenotyping analysis.
We also included the runt-related transcription factors Runx1 and Runx3, which in-
fluence T-cell differentiation(27). Lastly, we also included both pro-inflammatory and
inhibitory cytokines that mediate T-cell effector function and define the various T-
cell subsets; these include interferon (IFN)-γ (Th1), interleukin (IL)-13 (Th2), IL-17
(Th17), IL-10 and TGFβ (Treg).

To validate this part of our methodology, we used flow cytometry– based cytokine
capture assays (Miltenyi), which enable the determination of cytokine expression
without the need for cell fixation(28). We tested expression of the following cytokines
for which cytokine secretion assays are commercially available: TNF-α, IFN-γ, IL-2,
IL-10, IL-13 and IL-17. Into each plate we sorted 60 single CD4+CD45RO+ mem-
ory phenotype T cells from healthy human peripheral blood that were positive for
protein expression of a particular cytokine and 36 single CD4+CD45RO+ T cells
that were negative for cytokine protein expression (Fig. 2 and Supplementary Table
6). These plates were initially amplified with the first reaction containing 74 TCR
Vregion primers, 2 C-region primers and 34 phenotyping primers. TCR primers were
included in the first reaction to demonstrate that their presence does not interfere
with subsequent phenotyping reactions.

Nested PCR, barcoding and sequencing analysis was performed for phenotypic
parameters. We detected transcripts in single, cytokinepositive T cells with 77–97%
sensitivity (Fig. 2 and Supplementary Table 7). Our false-positive rate was very low;
the specificity of our assay was 94–100% when compared to the relevant cytokine
capture assays (Fig. 2 and Supplementary Table 6).

For some of the cytokines genes we validated, there does appear to be a low
false-positive rate compared to cytokine secretion assays. Because these wells clearly
exceed background levels (Methods and Supplementary Fig. 3), this suggests that
these rare cells do indeed express the particular mRNA, although its protein product
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is not detected. This is not surprising given that cytokine genes are subject to partic-
ularly tight regulation, including translational repression that might prevent protein
expression even in the presence of mRNA29.

We also readily detected expression of all the transcription factors in our panel in
single T cells. For most of these transcription factors, there are no available surface
markers that reliably predict expression. An exception is FOXP3, whose expression
correlates well with high expression of the surface marker CD25 in CD4+ T cells30. To
validate our methodology for FOXP3 expression, we sorted 60 single CD25highCD4+
T cells and 36 single CD25−CD4+ T cells into a single plate. We detected FOXP3
in 54/60 (90%) of CD25high cells and 0/36 (0%) of CD25− cells (Fig. 2g). We also
fixed and stained T cells from the same donor with both CD25 and FOXP3 to confirm
the correlation between the high expression of CD25 and FOXP3 (Fig. 2h).

We could detect as little as one molecule of template in a given cell, although
sensitivity improves with increased template abundance (Supplementary Fig. 5).
Whereas frequency of detection improves with template abundance, read number of a
given transcript in the cells called as positive does not (Supplementary Fig. 5). This
demonstrates that our methodology is binary, in that it indicates presence or absence
of a given transcript. Therefore, read number per well should not be considered a
quantitative indicator of the abundance of that transcript.

It is very possible that a particular mRNA might be expressed but not detected in
a particular cell, especially at lower copy number (Supplementary Fig. 5). Therefore,
we expect that false negatives will occur with this method. However, our data show
that false positives do not occur at a significant rate (Supplementary Fig. 3). Thus,
for practical purposes, the positive predictive value of our assay exceeds its negative
predictive value for any given parameter. One should consider this when analyzing
data using this methodology.

Despite the many factors that might contribute to discordance between mRNA
and protein detection, our data correlate remarkably well with data from cytokine
capture assays and with CD25 protein expression in the case of FOXP3 (Fig. 2 and
Supplementary Table 6). However, we considered either the cytokine secretion assays
or CD25 staining as the gold standard and did not take into account the possibility
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Table 1.3: TCR sequencing primers for the first two PCR reactions. Common se-
quences are indicated in bold.
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Table 1.4: Column barcoding primers used for the third PCR reaction in Illumina
paired-end primers.
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of true discordance between mRNA and protein expression. Clearly, mRNA expres-
sion does not always correlate with protein expression as many genes are subject to
post-transcriptional regulation. Cytokine gene expression is subject to particularly
complex regulation, including mechanisms affecting translation and/or mRNA stabil-
ity(29). Because there is likely discordance between mRNA and protein expression
within cells, the data we show on sensitivity and specificity should be used only as a
guide (Supplementary Table 7).

Our strategy can also be customized or expanded. For example, the phenotyping
panel can be customized to include additional genes of functional interest. In addition,
because we can obtain the sequence of any given parameter, we can also design assays
to measure genetic polymorphism, somatic mutation or splice variation of genes in
single cells. Of course, because it is difficult to predict the cumulative affect of
additional primers in a multiplexed PCR reaction, addition of parameters would
likely require additional optimization and validation. But because the presence of
additional transcripts does not affect the sensitivity of detection of a given transcript
in our current panel of 17 different phenotypic parameters, (Supplementary Fig. 5),
substantial expansion of this panel may be possible even with current sequencing
technology.

Analysis of tumor-infiltrating lymphocytes To demonstrate one application of this
method, we analyzed tumor-infiltrating lymphocytes (TILs) from a human colorectal
cancer sample. Therapies designed to incite anti-tumor T-cell responses have recently
shown great promise in the treatment of human cancer(31,32), and in colorectal can-
cer, the presence of TILs correlates strongly with a positive prognosis(33,34). To date,
however, phenotypic characteristics and TCR sequences of TILs have generally been
studied at the bulk population rather than at the single-cell level(33–36). Thus, there
is some controversy over their function and clinical significance in different tumors37
and no consensus view on their specificity or functional properties.

We applied our methodology to 736 sorted, single CD4+ TILs from one patient
volunteer who underwent a colectomy for stage T3N1 rectal adenocarcinoma. For
comparison, we also analyzed 372 CD4+ T cells derived from resected adjacent colon
tissue from the same patient, as well as peripheral blood T cells from a different
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healthy donor. TCRβ sequences were successfully obtained from 597 of the 736 CD4+
T cells (81%), and we were able to assign productive, paired TCRαβ sequences to 503
of these (68% of total). In this particular tumor, we detected marked T-cell clonal
expansion; the most frequent TCRβ was detected in 52/597 cells, and ten TCRβ
sequences were detected in at least 8 cells (Supplementary Table 8). Out of 299 unique
TCRβ sequences, the ten most frequent sequences accounted for 215/597 (36%) of
the cells where sequences were recovered; 236 sequences (40%) were detected in only
one cell (Supplementary Table 8).

Among the 372 CD4+ T lymphocytes derived from resected adjacent colon tissue
from the same patient, we obtained TCRβ sequences from 309 cells (83%), and we
were able to assign productive, paired TCRαβ sequences to 217 of these (58% of to-
tal). In contrast to the TCR repertoire from intratumoral T cells, clonal expansion
was minimal, with only four TCR clones detected twice within the population (Sup-
plementary Table 9). Also, not a single TCRαβ heterodimer sequence was shared
between T cells in the tumor and adjacent colon tissue. This suggests that expanded
T-cell clones present within tumors may be reacting to tumor antigens.

Next we searched for homology between TCR sequences in the intratumoral T-
cell population to determine whether T-cell expansion was due to antigen-specific re-
sponses. The most highly expanded TCRβ (CASSLASMGVGELFF) sequence within
our sample set varied by only two amino acids from another expanded TCRβ (CASS-
SASGGVGELFF) sequence. These TCRβ sequences comprised, respectively, 52 and
8 of 597 total T cells. These two expanded clones also used the same TCRα chain
(CAYRPNYGGATNKLIF), although the TCRα chains used different nucleotide se-
quences in the two clones and were not present elsewhere within the sample set,
indicating that this finding was not a result of cross-contamination (Supplementary
Fig. 6 and Supplementary Table 8). Each T-cell clone also expressed a different non-
productive TCRα chain. This finding further confirms that the common TCRα chain
was indeed the TCRα chain that was used by these T-cell clones, because both clones
expressed only one productive TCRα chain gene. Junctional diversity describes the
process of random nucleotide addition (Nnucleotide addition) or subtraction at the
junctions of V(D)J rearrangements, which markedly add to TCR diversity9. In both
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T-cell clones, common sequence motifs within TCRα and TCRβ genes were generated
as a result of significant N-nucleotide addition, indicating that these sequences would
not be very common by chance (Supplementary Fig. 6). These findings strongly
suggest that these two T-cell clones, which comprised over 10% (60/597) of the total
CD4+ T cells we analyzed from this tumor, have been selected and activated by the
same peptide-MHC ligand.

In addition to TCR sequencing, we phenotyped these cells using the 17-parameter
panel described above. We stimulated half of the T cells for 3 h with PMA (phorbol
12-myristate 13-acetate) and ionomycin. Consistent with previous findings(38–41),
the stimulated CD4+ TILs displayed a phenotype distinct from stimulated CD4+ T
cells obtained from adjacent colon or peripheral blood (Fig. 3a and Supplementary
Tables 10 and 11). A higher percentage of the stimulated TIL cells expressed RORC
(146/279, 52%), IL-17 (184/279, 66%), TNF-α (217/279, 78%) and IFN-γ (148/279,
74%; Fig. 3b). To visualize the data, we used principal component analysis, which
concentrates the most important sources of variation in larger data sets(2). This
allows us to readily visualize the phenotypic diversity of CD4+ T cells (Fig. 3a and
Supplementary Fig. 7). Although there is substantial overlap between the phenotypes
of CD4+ T cells derived from tumor, colon and blood, these three populations of
cells cluster discretely (Fig. 3a). Such phenotypic diversity is not as apparent in the
absence of stimulation (Supplementary Fig. 8).

Although CD4+ TILs were largely distinguished from the other populations by
their co-expression of IL-17, RORC, TNFα and IFN-γ, there was also notable het-
erogeneity within each T-cell population (Fig. 3b,c). Also, individual cells frequently
co-expressed multiple, different, master-regulator transcription factors, showing that
the categorization of CD4+ T cells into specific subsets is not always straightforward
(Fig. 3b,c).

A major advantage of our methodology is that it enables us to compare the phe-
notypic and functional range of T cells that can arise from a single TCR clone. For
instance, we observed that compared to unexpanded T cells, a significantly higher
percentage of highly expanded (≥10) T-cell clones expressed IL-17 (70/80 versus
65/126, P < 0.005) or RORC (50/80 versus 43/126, P < 0.005). Conversely, FOXP3
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was less likely to be expressed in highly expanded versus unexpanded cells (5/80
versus 32/126, P < 0.005, Fig. 3b). When clustering analysis is applied, certain
phenotypic clusters are preferentially occupied by unexpanded versus expanded cells
or vice versa (Fig. 3c).

We also looked more closely at the FOXP3+ TILs (Fig. 4). The function of Treg
cells in cancer has been the subject of much debate and FOXP3+ T-cell infiltration in
tumors has been correlated with both favorable and poor prognoses38–41. Within this
particular tumor, we found two distinct subsets of FOXP3+CD4+ T cells, differenti-
ated by their expression of RORC (Fig. 4a). Within FOXP3+RORC+ cells, the over-
whelming majority of cells expressed IL-17 (16/17, 94%), whereas IL-17 expression
was rare within FOXP3+RORC− cells (3/28, 11%) (Fig. 4a). These two subsets also
varied greatly with respect to the degree of clonal expansion. The FOXP3+RORC+
population consisted largely of clones that were expanded within our data set (12/17,
71%), whereas clonal expansion was rare in the FOXP3+RORC− population (1/28,
4%). Incidentally, the only FOXP3+RORC− T cell that was clonally expanded did
express IL-17.

FOXP3+RORC+ IL-17–expressing T cells, described in both human colorec-
tal cancer and in mouse models of polyposis, have been shown to have potent T-
suppressive activity while being pro-inflammatory in their expression of IL-17 (refs.
39,40). Although the consequences of FOXP3+ T cell infiltration into tumors are
unclear, the presence of IL-17 has been associated with tumorigenesis and poor prog-
nosis(41–43). Based on this, IL-17 has been proposed as a therapeutic target. Both
FOXP3+RORC+ T cells and FOXP3−RORC+ Th17-phenotype T cells may produce
IL-17 within tumors, however, the relationship between these two populations of T
cells is unclear. It has been proposed that they are unrelated given the discordance
between their numbers within tumors(42).

To address this question, we searched for T cells that shared TCRαβ sequences
with FOXP3+RORC+ T cells within our data set. We found 61 instances of FOXP3−
T cells sharing TCR sequences with FOXP3+RORC+ T cells (Fig. 4b). The majority
of these FOXP3− T cells also expressed IL-17 (49/61, 80%) and/or RORC (39/61,
64%). These findings indicate that these two populations of IL-17–expressing T cells
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share a common ancestry and are consistent with the idea that FOXP3+RORC+
T cells within tumors lose FOXP3 expression to become Th17 cells(44,45). The
relationship between FOXP3+RORC− T cells and FOXP3+RORC+ T cells is not
as clear. We cannot say whether the FOXP3+RORC+ T cells we observed originated
as FOXP3+RORC− T cells which underwent clonal expansion. However, we did not
detect TCR sequences shared between these two populations, and this suggests that
FOXP3+RORC− T cells did not originate from clonally expanded FOXP3+RORC+
T cells.

Interestingly, both of the expanded TIL clones that express highly similar TCRs
(Supplementary Fig. 6) contained cells expressing IL-17 and RORC. Among the 27
stimulated cells in the first TCRβ clone (CASSLASMGVGELFF), 24 expressed IL-17
and 16 expressed RORC. One cell co-expressed both FOXP3 and RORC. For the
second TCRβ clone (CASSSASGGVGELFF), only two of eight sequences were present
in the stimulated sample. Both of these T cells expressed IL-17 and one expressed
RORC. Taken together, our data show clear heterogeneity between FOXP3+ T cells
within tumors, which might help explain the why the data regarding the function of
Treg cells in tumors have been controversial.

1.4.3 Discussion

The approach we describe here enables highly efficient TCR determination and mul-
tiparametric phenotypic analysis in single T cells. It requires no proprietary reagents
or materials, and can be performed in any standardly equipped laboratory with access
to flow cytometry and deep sequencing. To our knowledge, we describe the highest
reported efficiency in sequencing TCRs from single T cells. Furthermore, our method
is uniquely suited to identifying multiple TCRα chains from single T cells.

We demonstrate the utility of this technology by analyzing TILs, and show how
TCR sequences can add an invaluable dimension to multiparametric phenotypic anal-
ysis by marking the ancestry of particular T cells, especially when the antigen is not
known. For example, we show that FOXP3+RORC+ T cells and FOXP3−RORC+
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Th17-phenotype cells can share a common ancestry (indicated by identical TCR se-
quence), indicating that the activation of a single T cell can lead to subsequent clonal
expansion, loss of FOXP3 expression and differentiation to Th17-phenotype cells (Fig.
4d). Furthermore, we show an example of two expanded T-cell clones with highly
homologous TCR sequences; among the two clonal populations are members express-
ing IL-17 and FOXP3. Because these two highly expanded T-cell clones appear to be
responding to the same peptide-MHC, antigen-specificity is likely important to the
selection of these T cells (Fig. 3d). More work is needed to understand the signals
and antigens that lead to activation, loss of FOXP3 expression and clonal expansion
of these IL-17–producing T cells within tumors. Also, TILs from colorectal cancer
have been shown to be heterogeneous with respect to IL-17 secretion, so these re-
sults need to be validated on additional tumor samples40. But given the association
of IL-17 with tumorigenesis and poor clinical outcomes, the event(s) responsible for
initially activating these cells might represent an attractive therapeutic target.

This technology is also complementary to recently developed methods to determine
ligands for TCRs using random peptide-MHC libraries(11). These complemetary
approaches enable the identification of potentially important disease-associated TCRs
and subsequent discovery of their antigens. Many human diseases including cancer,
autoimmune disease and infectious diseases are characterized by T-cell activation and
proliferation; what antigens are driving these T-cell responses may not be known.
Identification of these antigens could be invaluable in understanding the origin of
both beneficial and potentially detrimental T-cell responses and provide targets for
therapeutic intervention.

1.4.4 Methods

Single-cell sorting and flow cytometry. All fluorescence-activated cell sorting (FACS)
experiments were performed on ARIA II instruments (Becton Dickinson) in the Stan-
ford Shared FACS Facility. Cytokine capture assays (Miltenyi Biotec) were performed
per manufacturer’s instructions on freshly isolated human peripheral blood mononu-
clear cells (PBMCs). PBMCs were collected from a healthy donor who gave informed
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consent. The Jurkat T-cell leukemia cell line (Clone E6-1) was obtained from ATCC.
The following antibody clones were used for flow cytometry: anti-CD3 (SK7, BioLe-
gend), anti-CD4 (RPA-T4, BioLegend), anti-CD8 (OKT8, eBiosciences), anti-αβTCR
(IP26, BioLegend), anti-CD25 (2A3, Becton Dickinson) and anti-FOXP3 (PCH101,
eBiosciences). Dead cells were excluded using a LIVE/DEAD Fixable Dead Cell Stain
kit (Invitrogen).

TIL preparation. The Stanford University Institutional Review Board approved
all protocols for collection of human tissue and blood. Tissue was collected with in-
formed consent from a patient undergoing colon resection for colon cancer at Stanford
University Hospital after initially being processed by the Department of Pathology.
Tumor tissue was cut into small pieces and incubated in 10 mM EDTA (EDTA) in
PBS for 30 min. Cells in suspension were passed through a 10-μM nylon cell strainer
(Becton Dickinson). Tissue was then incubated in RPMI with 5% FCS containing
0.5 mg/ml of Type 4 collagenase for 30 min (Worthington Biochemical). Tissue
was periodically disrupted during incubation by passing through a syringe topped
with a blunt-ended 16-gauge needle. Lymphocytes were enriched through Percoll
(GE Healthcare) gradient centrifugation. Cells were frozen in complete RPMI con-
taining 10% DMSO (dimethylsulfoxide) and 40% FCS (FCS) for later use. Prior to
use, cryopreserved lymphocytes were thawed and washed with complete RPMI before
overnight recovery at 37 °C. Cells were transferred to tubes, washed and resuspended
in cytometry buffer (PBS + 0.05% sodium azide + 2 mM EDTA + 2% FCS) for
staining. For stimulation, cells were cultured for 3 h at approximately 15 × 106/ml
in complete RPMI (10% FCS) and 150 ng/ml PMA + 1 μM ionomycin. At the end of
the 3 h stimulation, cells were pipetted vigorously to remove adherent cells from the
plate and transferred to tubes, washed and resuspended in cytometry buffer (PBS +
0.05% sodium azide + 2 mM EDTA + 2% FCS).

TCR sequencing and phenotyping. Single-cell sorting was performed using an
ARIA II cell sorter (Becton Dickinson). TCR sequence and gene expression anal-
ysis from single cells were obtained by a series of three nested PCR reactions as
described13. Cells were sorted directly into RT-PCR buffer. For the first reaction,
reverse transcription and preamplification were performed with a One-Step RT-PCR
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Figure 1.14: Barcode architecture.

kit (Qiagen) using multiplex PCR with multiple Vα and Vβ region primers, Cα and Cβ
region primers, and phenotyping primers in a 20-μl reaction (Supplementary Tables
1 and 2). For the PCR reaction #1, the final concentration of each TCR V-region
primer is 0.6 μM, each C-region primer is 0.3 μM, each phenotyping primer is 0.1
μM. A 25-cycle first RT-PCR reaction was done per manufacturer’s instructions us-
ing the following cycling conditions:50°C30min; 95°C 15 min; 94°C 30s, 62°C 1 min,
72°C 1 min × 25 cycles; 72 °C 5 min; 4 °C. Next, a 1-μl aliquot of the first reaction
was used as a template for second 20-μl PCR using HotStarTaq DNA polymerase
(Qiagen) for either TCR sequencing or phenotyping. The following cycling condi-
tionswere:95°C15min;94°C30s, 64°C 1 min, 72°C 1 min × 25 cycles (TCR) or 35
cycles (phenotyping); 72 °C 5 min; 4 °C. For the TCR sequencing reaction, multiple
internally nested TCRVα, TCRVβ, TCRCα and Cβ primers (Supplementary Table 1)
were used (V primers 0.6 μM, C primers 0.3 μM). For the phenotyping reaction, mul-
tiple internally nested phenotyping primers (Supplementary Table 2) were used (0.1
μM). The second set of TCR V-region primers and 5´ phenotyping primers contained
a common 23-base sequence at the 5´ end to enable further amplification (during
the third reaction) with a common 23-base primer. The second set of 3´ phenotyp-
ing primers contained a common 24-base sequence to enable further amplification
(during the third reaction). 1-μl aliquot of the second PCR product was used as a
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template for the third 20-μl PCR reaction, which incorporates barcodes and enables
sequencing on the Illumina MiSeq platform. For the third and final PCR reaction
for TCR sequencing, amplification was performed with HotStarTaq DNA polymerase
for 36 cycles using a 5´ barcoding primer (0.05 μM) containing the common 23-base
sequence and a 3´ barcoding primer (0.05 μM) containing sequence of a third inter-
nally nested Cα and/or Cβ primer, and Illumina Paired-End primers (0.5 μM each,
Supplementary Table 3). For tumor-infiltrating and colonic T-cell analysis, the fi-
nal barcoding PCR reactions for TCR alpha and TCR beta were combined. When
the third reaction was performed together, the 3´ Cα barcoding primer was used in
threefold excess to the 3´ Cβ barcoding primer (0.15 μM and 0.5 μM, respectively).
In addition to the common 23-base sequence at the 3´ end (that enables amplifica-
tion of products from the second reaction) and a common 23-base sequence at the
5´ end (that enables amplification with Illumina Paired-End primers), each 5´ bar-
coding primer contains a unique 5-base barcode that specifies plate and a unique
5-base barcode that specifies row within the plate (Supplementary Fig. 1). These 5´
barcoding primers were added with a multichannel pipette to each of 12 wells within
a particular row within a particular plate. In addition to the internally nested TCR
C-region sequence and a common 23-base sequence at the 3´ end (that enables am-
plification with Illumina Paired-End primers), each 3´ barcoding primer contains a
unique 5-nucleotide barcode that specifies column. These 3´ barcoding primers were
added with a multichannel pipette to each of eight wells within a column within all
plates. The third reaction for phenotyping was performed in a similar manner to the
TCR sequencing, except that the 3´ primer contains the common 24-base sequence
contained in all 3´ primers from the second reaction rather than the internally nested
TCR C-region primer. The same 5´ barcoding primers were used for the third phe-
notyping reaction as the TCR sequencing reaction. After the third and final PCR
reaction, each PCR product should have a unique set of barcodes incorporated that
specifies plate, row and column and have Illumina Paired-End sequences that enable
sequencing on the Illumina MiSeq platform. The PCR products were combined at
equal proportion by volume, run on a 1.2% agarose gel, and a band around 350 to 380
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Figure 1.15: Schematic for barcoding (third) PCR reaction. An aliquot from the sec-
ond PCR reaction product is used as a template for this reaction. To each well within
a particular row within a given plate, a distinct 5’ primer is added by multichannel
pipette that specifies row. To each well within a column, a distinct 3’ primer is added
by multichannel pipette that specifies column. The reaction is performed with Illu-
mina paired-end primers in all wells, which enable sequencing on the Illumina MiSeq
platform.

bp was excised and gel purified using a Qiaquick gel extraction kit (Qiagen). This
purified product was then sequenced.

PCR primer design. All primer sequences are provided in Supplementary Fig-
ure 1 and Supplementary Tables 1–3. All primers were designed to have a Tm of
70–72 °C (Tm = 4×[GC]+2[AT]). For TCR primers, base degeneracy was incorpo-
rated into the primers when necessary to account for TCR polymorphism and ensure
amplification of all known functional Vα, Vβ, Cα and Cβ regions identified in the
IMGT database (http://www.imgt.org/). V-region primers were designed to be at
least 50 bases from the distal end to ensure inclusion of the entire CDR3 region. All
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TCR and phenotyping primers for the second reaction contain the common sequence
CCAGGGTTTTCCCAGTCACGAC at the 5´ end, which enables amplification with
barcoding primers during the third reaction. All phenotyping primers for the sec-
ond reaction contain the common sequence AGCGGATAACAATTTCACACAGGA
at the 5´ end, which enables amplification with barcoding primers during the third
reaction. After all reactions are performed, TCR primers amplify a segment of the
TCR of approximately 250 bp. The final product for sequencing is approximately 380
bp. Phenotyping PCR primers were designed to span introns and amplify all major
variants of the genes present in the NCBI database (http://www.ncbi. nlm.nih.gov).
After the second reaction is performed, phenotyping primers amplify a gene segment
of approximately 200 bp, and the final sequencing product is approximately 350 bp.

Sequencing data analysis. Raw sequencing data were processed and demultiplexed
using a custom software pipeline to separate reads from every well in every plate
according to specified barcodes. All paired ends are assembled by finding a consensus
of at least 100 bases in the middle of the read. The resulting paired-end reads are then
assigned to wells according to barcode. Primer dimers are filtered out by establishing
minimum length of 100 bases for each amplicon. See Supplementary Note for further
details on software. For example, in a recent sequencing run consisting of 2,164 cells,
we obtained 2.01 × 10^7 raw reads, 1.95 × 10^7 pass-filtered reads (Illumina.com),
forward/reverse consensus sequences were obtained and barcodes assigned to 1.66 ×
10^7 reads, with 1.60 × 10^7 reads above 100 bases. The average read number per
well was 7,382 ± 5,366. A consensus sequence is obtained for each TCR gene. Because
multiple TCR genes might be present in a given well, our software establishes a cutoff
of >95% sequence identity within a given well. All sequences exceeding 95% sequence
identity are assumed to derive from the same TCR gene and a consensus sequence
is determined. The 95% cutoff conservatively ensures all sequences derived from the
same transcript would be properly assigned, even given a PCR rate of 1/9,000 bases,
and sequencing error rate up to 0.4%22. TCR V, D and J segments were assigned
by VDJFasta19. For phenotyping transcripts, the number of reads containing a 95%
match to the customized database of transcription factor and cytokine genes are
scored.
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Figure 1.16: Validation of true-positive cutoff criteria by very deep sequencing (See
online SI methods).
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Single-well depth and dominance cutoff parameter validation. For both TCR and
phenotypic parameters, there is a low background of unrelated sequences (Supple-
mentary Fig. 3). We quantified potential background through highdepth sequencing
and set thresholds accordingly. To quantify this background, sequencing was done
at high depth. Single, PMA and ionomycin–stimulated T cells were sorted into two
plates and processed for TCR and phenotypic analysis. Into these two plates, no cells
were sorted into 16 wells, scattered through all columns and rows. Eight of these
wells were processed normally with all reagents added. Eight of these wells were left
completely blank throughout the analysis with no reagents added. These two plates
(as opposed to the usual 20 to 25 plates) were run on a single sequencing run to give
a sequencing depth more than tenfold higher than usual.

There was no significant difference in TCR background reads in negativecontrol
wells without sorted T cells, regardless of whether wells were processed with reagents
(Supplementary Fig. 3a,b). These data indicate that background is primarily due to
error in PCR, sequencing or oligonucleotide synthesis within the barcodes and not
due to cross-contamination.

For TCR reads within the two test plates, we validated cutoff criteria by simulated
subsampling (Supplementary Fig. 3a,b). Plates were sequenced to an average depth
of >45,000 reads per well, and subsampled to depths ranging from 100 to 45,000
average reads per well. By quantifying background signal (negative-control wells),
we provide justification for thresholds set in the analysis. For TCR analysis, we
establish a threshold normalized depth (based on average number of reads per well in
the plate) of 10%. Using normalized depth independently, there is a clear separation
between wells containing cells and background signal in negative-control wells at all
depths down to 100 reads/well. For TCR analysis, establishing thresholds for clone
dominance within the well further excludes the majority of negative-control wells and
wells potentially containing more than one cell. For beta chains, a domain dominance
cutoff is set at >85%. Domain dominance is determined based on 100% identity in
sequence. Thus, this threshold of 85% is considerably lower than 100% because it
accounts for the presence of PCR mutation or sequencing error. Because multiple
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Figure 1.17: Human TCR V-gene usage in single T cells.

TCRα chains can exist within a given cell, the threshold for domain dominance is
more permissive and set to 10%.

For phenotypic parameters, unlike for TCR genes, not all cells express a given
parameter. Therefore, background is expected to depend upon number of cells ex-
pressing a given parameter as well as read depth. To investigate background for
phenotypic parameters, we performed analysis on two plates; we sorted PMA plus
ionomycin–stimulated IL-17+ single T cells into 40 wells, PMA plus ionomycin–stim-
ulated IL-17− single T cells into 40 wells, and left 16 wells as negative-control wells.
Eight of these negative-control wells were processed normally with all reagents added.
Eight of these wells were left completely blank throughout analysis with no reagents
added. IL-17+ and IL-17− T cells were sorted because this population gives a vari-
able range of cells expressing all phenotypic parameters within the plate. We assessed
background levels of each phenotypic parameter signal in negative-control wells. As
was the case with TCR, there was no marked difference in background between neg-
ative wells processed with (0.54 background reads/well) or without reagents (0.72
background reads/well), suggesting that background is primarily due to error in
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PCR, sequencing or oligonucleotide synthesis within the barcodes and not due to
cross-contamination. Background was directly proportional to number of reads for
each particular parameter on a plate and number of cells expressing a given param-
eter (Supplementary Fig. 3c). The ratio of reads/ negative-control well versus total
reads/well for each phenotypic parameter in a given plate is approximately 1.23 ×
1e−3. This ratio is constant, independent of the frequency of cells expressing a given
parameter.

We then performed high-depth analysis on one plate containing 80 wells with single
T cells and 16 negative-control wells to further investigate background per well. The
plate was sequenced to an average depth of >45,000 reads per well, and subsampled to
depths ranging from 100 to 45,000 average reads per well. We individually assessed the
two phenotypic parameters with the highest level of background on this plate, RUNX1
and GATA3. For RUNX1 and GATA3, respectively, the ratio of reads/negative-
control well versus total reads/well was 1.30 × 10−3 and 1.71 × 10−3 consistent
with levels established in the analysis of the prior plate (Supplementary Fig. 3c).
This indicates that relative background does not vary significantly, even at high-read
depth. We assessed RUNX1 and GATA3 signal in 80 wells containing T cells and
16 negative-control wells (Supplementary Fig. 3d). Setting a threshold to 1 s.d.
below the mean of log read counts per well (in all wells within a sequencing run
expressing a given parameter) provides a scale-free means of conservatively excluding
all background signals for phenotypic parameters. The accuracy of this threshold
does not vary as a function of frequency of cells expressing the parameter, as only
wells expressing a given parameter are included.

Sensitivity of detection. We further investigated the sensitivity of our method
for detection of a particular transcript. A synthetic double-stranded (ds)DNA was
constructed that contains binding sites for our IL-17 primers (Supplementary Fig. 5a).
The construct is identical to the exogenous IL-17 amplicon except 15 nucleotides of
endogenous IL-17 sequence is replaced with a 15-nucleotide random molecular barcode
giving a theoretical diversity of >109 (415). This molecular barcode was incorporated
to enable tracking of individual molecules during the analysis and further validate
quantification (we should not be able to detect more molecular barcodes in a given



CHAPTER 1. ESTABLISHING REPERTOIRE ANALYSIS TECHNOLOGIES 81

well than molecules added if quantification was accurate). This synthetic construct
was made by PCR using a 124-base 5´ primer incorporating the primer sequences
and the molecular barcode (5´ GCG TAA TAC GAC TCA CTA TAG GGA GAC
AGA CAA GAA CTT CCC CCG GAC TGT GAT GGT CAA CCT GAA CAT
CCA TAA CCG GAA CAT NNN NNN NNN NNN NNN CAA AAG GTC CTC
AGA TTA CTA CAA C). To ensure that unique barcodes were not amplified, the
template was first amplified by 60-cycle reaction using only the 5´ primer, and then 1
cycle was performed after addition of the 3´ primer. The PCR product was purified
and quantified. The product was quantified by Nanodrop 2000 (Thermo Scientific)
and Bioanalyzer 2100 (Agilent). Based upon these calculations, serial dilutions were
performed and quantities were further verified by performing 50-cycle PCRs using
primers within the template sequence. We spiked this synthetic construct into wells
at different serial dilutions indicated and performed reactions and analysis on two
plates. These two plates were processed identically, except a single, stimulated T cell
was added to one of the plates. Into both plates, eight negative-control wells were
processed without spiked template or cells.

We demonstrate that the method can detect as little as one molecule of dsDNA
template (equivalent to two molecules of mRNA) (Supplementary Fig. 5b). Sensi-
tivity improves with increased copy number and 100% sensitivity is achieved when 8
molecules of dsDNA (equivalent of 16 molecules of mRNA) are spiked into the initial
reaction (Supplementary Fig. 5b). Although sensitivity does improve with increased
copy number, read count per well does not significantly change (Supplementary Fig.
5c). This indicates that our readout is binary and read depth will not significantly
affect sensitivity; in other words, sequencing at a higher depth will not improve iden-
tification of low-abundance transcripts in cells. Furthermore, the sensitivity of detec-
tion for one particular phenotypic parameter is not affected by the presence of other
transcripts, as the sensitivity of detection for this template does not differ when stim-
ulated T cells are added to the reaction and other amplified transcripts are present
(Supplementary Fig. 5c). The number of molecular barcodes detected in a well is
directly proportional to number of molecules added (Supplementary Fig. 5d). No
molecular barcodes were repeated in different wells in our data set after accounting
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Figure 1.18: Analysis of the effect of transcript abundance on assay sensitivity and
read count.
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for background and the presence of PCR or sequencing error (Supplementary Fig.
5d).

Mean read counts per well for each phenotypic parameter did not vary markedly
for phenotypic parameters present in at least 50 cells in our tumor and colon T-cell
data set, which were sequenced to similar read depth (Supplementary Fig. 5e).

Single-cell sequencing accuracy. PCR error occurs at a rate of 1/9,000 bases and
sequencing error has been reported to occur at a rate up to 0.4%22. Our method
relies on generation of a consensus sequence from 10–10,000 reads, thus establishing
single-cell transcript coverage far superior to that provided by genomic sequencing,
mitigating the role of PCR error and largely eliminating sequencing error. To de-
termine the accuracy of sequencing, we looked at the incidence of error within phe-
notyping transcripts that are entirely germline encoded, unlike TCR genes. When
consensus sequence was obtained for all phenotyping transcripts within individual
wells, the sequences were always identical. This indicates that despite sequencing or
PCR error, the consensus sequence derived from a given well from >10 reads is 100%
accurate within our data set.

Statistical analysis. To determine sensitivity (SN), specificity (SP), posi-
tive predictive value (PPV) and negative predictive value (NPV) (Supplemen-
tary Table 7), the following formulas were used: SN = TP/(TP + FN), SP
= TN/(FP + TN),PPV=SN×PRV/[(SN×PRV+(1−SP)×(1−PRV)],NPV=SP×
(1−PRV)/[(1−SN)×PRV+SP×(1−PRV)].TP=TruePositives,TN= True Negative,
FP = False Positives, FN = False Negatives. PRV = Prevalence, determined by
percentage of cells analyzed that were positive for the given parameter by flow
cytometry. Chi-squared test was used to determine the statistical significance of
skewing of phenotypic parameters within expanded versus unexpanded T-cell clones.
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1.5 pMHC repertoire sequencing

In the following study, Birnbaum et al developed a yeast-displayed pMHC library for
characterizing TCR-pMHC interfaces and de-orphaning TCR specificity. Due to the
constraint of the single variable peptide and a sandwiched molecular interaction, the
system provided powerful early datasets to validate some of the mathematical methods
relevant to the convergence analysis framework, greatly expanded in Chapter 2.

In order to survey a universe of major histocompatibility complex (MHC)-
presented peptide antigens whose numbers greatly exceed the diversity of the T cell
repertoire, T cell receptors (TCRs) are thought to be cross-reactive. However, the
nature and extent of TCR cross-reactivity has not been conclusively measured ex-
perimentally. We developed a system to identify MHC-presented peptide ligands
by combining TCR selection of highly diverse yeast-displayed peptide-MHC libraries
with deep sequencing. Although we identified hundreds of peptides reactive with each
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of five different mouse and human TCRs, the selected peptides possessed TCR recog-
nition motifs that bore a close resemblance to their known antigens. This structural
conservation of the TCR interaction surface allowed us to exploit deepsequencing in-
formation to computationally identify activating microbial and self-ligands for human
autoimmune TCRs. The mechanistic basis of TCR cross-reactivity described here en-
ables effective surveillance of diverse self and foreign antigens without necessitating
degenerate recognition of nonhomologous peptides.

1.5.1 Introduction

T cells are central to many aspects of adaptive immunity. Each mature αβ T cell
expresses a unique ab T cell receptor (TCR) that has been selected for its ability to
bind to peptides presented by major histocompatibility complex (MHC) molecules.
Unlike antibodies, TCRs generally have low affinity for ligands (dissociation constant
[K D ] ~ 1–100 m M), which has been speculated to facilitate rapid scanning of
peptide-MHC (pMHC) ( Matsui et al., 1991; Rudolph et al., 2006; Wu et al., 2002
). Structural studies of TCR-pMHC complexes have revealed a binding orientation
where, generally, the TCR CDR1 and CDR2 loops make the majority of contacts with
the tops of the MHC helices, whereas the CDR3 loops, which are conformationally
malleable, primarily engage the peptide presented in the MHC groove ( Davis and
Bjorkman, 1988; Garcia and Adams, 2005; Rudolph et al., 2006 ). The low affinity
and fast kinetics of TCR-pMHC binding, combined with conformational plasticity in
the CDR3 loops, would seem to facilitate cross-reactivity with structurally distinct
peptides presented by MHC ( Mazza et al., 2007; Reiser et al., 2003; Yin and Mari-
uzza, 2009 ). Indeed, given that the calculated diversity of potential peptide antigens
is much larger than TCR repertoire diversity, TCR cross-reactivity appears to be a
biological imperative ( Mason, 1998; Sewell, 2012 ). Cross-reactive TCRs have been
implicated in both pathogenic and protective roles for a number of diseases ( Benoist
and Mathis, 2001; De la Herran-Arita et al., 2013; Shann et al., 2010; Welsh et al.,
2010; Wucherpfennig and Strominger, 1995 ).
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Nevertheless, the true extent of TCR cross-reactivity, and its role in T cell im-
munity, remains a speculative issue, largely due to the absence of quantitative ex-
perimental approaches that could definitively address this question ( Mason, 1998;
Morris and Allen, 2012; Shih and Allen, 2004; Wilson et al., 2004; Wucherpfennig
et al., 2007 ). Although many examples exist of TCRs recognizing substituted or
homologous peptides related to the antigen ( Borbulevych et al., 2009, 2011; Krogs-
gaard et al., 2003 ), such as altered peptide ligands ( Kersh and Allen, 1996 ), most of
these peptides retain similarities to the wildtype (WT) peptides and are recognized
in a highly similar fashion. Only a handful of defined examples exist of a single TCR
recognizing nonhomologous sequences ( Adams et al., 2011; Basu et al., 2000; Colf et
al., 2007; Ebert et al., 2009; Evavold et al., 1995; Lo et al., 2009; Macdonald et al.,
2009; Nanda et al., 1995; Reiser et al., 2003; Zhao et al., 1999 ).

One approach that has been used to estimate cross-reactivity utilizes pooled,
chemically synthesized peptide libraries ( Hemmer et al., 1998b; Wilson et al., 2004;
Wooldridge et al., 2012 ). Usingcalculations basedupon thistechnique, it hasbeenex-
trapolated that ~10 6 different peptides in mixtures containing ~10 12 different pep-
tides were agonists ( Wilson et al., 2004; Wooldridge et al., 2012 ). Synthetic peptide
libraries have been used to isolate diverse peptide sequences ( Hemmer et al., 1998a ),
including microbialandself-ligandsforTCRsofinterest( Hemmeretal.,1997 ). However,
most studies find only close homologs to known peptides ( Krogsgaard et al., 2003;
Maynard et al., 2005; Wilson et al., 1999, 2004 ). Furthermore, these cross-reactivity
estimates were derived from the bulk stimulatory ability of libraries possessing femto-
molar concentrations of any given peptide and no knowledge of peptide loading in the
MHC or pMHC binding to the TCR. A more accurate estimate of cross-reactivity re-
quires the isolation of individual sequences from a library of MHC-presented peptides
based upon binding to a TCR.

Recently, we and others have created libraries of peptides linked to MHC via yeast
and baculovirus display as a method to discover TCR ligands through affinity-based
selections that rely on a physical interaction between the pMHC and the TCR (
Adams et al., 2011; Birnbaum et al., 2012; Crawford et al., 2004, 2006; Macdonald
et al., 2009; Wang et al., 2005 ). However, these methods have so far not been used
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to address the broader question of TCR cross-reactivity, given that the requirement
of manually validating and sequencing individual library “hits” has restricted the
approach to discovering small numbers of peptides.

Here, we combined affinity-based selections of pMHC yeast libraries and deep
sequencing to discover hundreds of unique peptide sequences recognized by multiple
murine and human TCRs. Strikingly, all peptide sequences bear TCR epitopes with
close similarity to their previously known agonist antigens. With an understanding
of this property, we created a computational algorithm to predict naturally occurring
TCR ligands using data from our deep-sequencing results. We tested a diverse set
of the putative TCR-reactive peptides and found that 94% are able to elicit a T
cell response. In general, TCR cross-reactivity does not appear to be characterized
by broad degeneracy but rather is largely constrained to a small number of TCR
contact residue “hot spots” on a peptide, while tolerating extensive diversity at other
positions. This more granular understanding of the properties of TCR cross-reactivity
has broad implications for ligand identification, vaccine design, and immunotherapy.

1.5.2 Results

Development and Selection of a Murine MHC Platform for Yeast Display We devel-
oped a system for the rapid and sensitive detection of TCR-binding peptides presented
by the murine class II MHC I-E k . This represents an advance over previous reports
of class II pMHC molecules displayed on the surface of yeast that either did not show
or were not tested for the ability to bind soluble TCR ( Birnbaum et al., 2012; Boder
et al., 2005; Esteban and Zhao, 2004; Jiang and Boder, 2010; Starwalt et al., 2003;
Wen et al., 2008, 2011 ). We designed our construct as a “mini” single-chain MHC
Aga2 fusion, with the truncated peptide-binding b 1 a 1 domains fused and the WT
peptide Moth Cytochrome C (MCC, residues 92–103) fused to the N terminus of the
MHC b 1 domain via Gly-Ser linkers ( Figure 1 A) ( Adams et al., 2011 ). The initial
construct was correctly routed to the yeast surface but did not have the ability to
bind to TCR, indicating that the pMHC was not correctly folded ( Figure 1 B).
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In order to rescue folding of the pMHC, we subjected the mini I-E k to error-
prone mutagenesis combined with introduction of solubility-enhancing mutations. We
selected this mutagenized mini scaffold for binding to the 2B4 TCR, which recognizes
MCC-I-E k with moderate affinity and slow kinetics ( Newell et al., 2011 ). Our
final construct contained solubilizing mutations in what was previously the a 1 b
1a 2 b 2 domain interface and one mutation between the MHC helix and the beta
sheets ( Figure 1 B). None of the mutated MHC residues contacted either the peptide
or the TCR. The evolved construct retained specific binding to severalMCC-I-E k
-recognizingTCRsandshowedcomparableaffinity to the WT pMHC ( Figure 1 B and
Figure S1 available online). We then created a peptide library tethered to the MHC
construct. Based upon the recently solved 2B4-MCC-I-E k structure ( Newell et al.,
2011 ), we mutagenized the peptide from P(-2) to P10 ( Figure 1 C). Limited diversity
was introduced at the two most distal residues and the primary MHC-binding anchor
residues at P1 and P9 to maximize the number of peptides capable of being correctly
displayed by the MHC ( Figure 1 C).

Our first attempts at screening involved “manual curation” of selections conducted
with multivalent TCR. The library showed enrichment after three rounds of selection
using highly avid TCR-coated streptavidin beads followed by a higher stringency
“polishing” round of selection using TCR tetramers. The three peptides that were
recovered via sequencing of 12 individual, hand-picked clones after selection were re-
lated to the WT MCC peptide—the P2, P5, and P8 TCR contacts were all conserved,
whereas P3 showed a conservative Tyr-to-Phe mutation ( Figure 1 D). We surmised
that these enriched WT-like sequences present in the later rounds dominated the
selections, preventing alternative, potentially nonhomologous sequences from being
recovered. For this reason, we turned to deep sequencing at each step of the selection
process to recover all enriched peptides.

Deep Sequencing of Selections for TCR-Binding Peptides Analysis of the pooled
yeast library DNA after each successive round of selection with 2B4 via deep sequenc-
ing showed enrichment from an essentially random distribution of amino acids to a
highly WT-like TCR recognition motif ( Figures 2 A and S2 A). After the third round,
there were nonhomologous amino acids at P5 and P8 selected above background (Met
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Figure 1.19: Library Design and Selection of I-Ek, a Murine Class II MHC Molecule
(A) Schematic of the murine class II MHC I-Ek displayed on yeast, as b1a1 mini
MHC with peptide covalently linked to MHC N terminus. (B) Mutations required for
correct folding of the b1a1 mini I-Ek (top). Mutations were derived from error-prone
mutagenesis and selection (purple) and rational design (red). Staining with 2B4 and
226 tetramers demonstrates function of error-prone-only construct (1st gen MHC)
as well as error-prone + designed mutant construct (2nd gen MHC) (bottom). (C)
Design of the peptide library displayed by I-Ek. Design is based upon the structure
of 2B4 bound to MCC-I-Ek (left). Residues from P(2) to P10 are randomized, with
limited diversity at P(2), P10, and the P1/P9 anchors (right). (D) 500 nM TCR
tetramer staining of three clones selected for binding to 2B4 TCR compared to MCC
(WT). TCR contact residues are colored red. See also Figure S1.
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and Ser for P5, Ile and Leu for P8) that were outcompeted by the WT-like motif by
the final round of selection. Overall, the number of unique peptides observed via
deep sequencing progressed from 132,000 unique in-frame peptides observed in the
sequenced portion of preselection library to only 207 unique peptides after the 3 rd
round of selection ( Figures 2 B, 2C, S2 A, and S2B). By the final round of selection,
the library was dominated by a handful of sequences, matching the result obtained
by manual curation ( Figures 1 D, 2 B, and 2C).

We repeated the selections with two other TCRs reactive to MCC-I-E k : 226
and 5cc7. We analyzed enrichment for each TCR after the third round of selection,
where there is enrichment for a binding motif but before complete convergence to a
small number of sequences ( Figures 2 A, 3 A, S2 B, and S3 A). Although all three
TCRs retain a WT-like TCR recognition motif (indicated by the outlined boxes in
the heatmaps), each TCR also shows some variation in positional preferences ( Figure
3 A). For example, where 2B4 can recognize P5 Met and Ser, 5cc7 can accommodate
P5 Leu, Val, and Arg. The P3 TCR contact position showed the least variance across
all three TCRs, with either Phe or Tyr being required for 2B4 and 5cc7, and Phe,
Tyr, or Trp being required for 226 ( Figure 3 A). 226, as previously reported, showed
a greater degree of cross-reactivity, able to recognize 897 unique peptide sequences.
The larger number of peptides recognized was largely a function of a higher tolerance
for substitutions on TCR-neutral and MHC-contacting residues, such as at positions
P(-1) and P4 ( Figures 3 A and S3 A) ( Ehrich et al., 1993; Newell et al., 2011 ).

The large collection of peptides recovered via deep sequencing enabled us to apply
covariation analysis to discover intrapeptide structure-activity relationships that were
not previously accessible with traditional single-residue substitution analysis ( Figure
3 B) ( Ehrich et al., 1993; Newell et al., 2011; Reay et al., 1994; Wilson et al., 1999
). By using covariation analysis of the central P5 residue and the C-terminal P8
residue, a pattern emerged: the native, MCC-like “up-facing” TCR-contact motifs for
each TCR (P5 Lys, P8 Ser/Thr) were strongly correlated, whereas the altered residues
(P5 Ser/P8Leu for 2B4, P5 Leu or Arg/P8 Phe for 5cc7) independently segregated (
Figure 3 B). These results highlight a degree of cooperativity in the composition of
residues comprising a “TCR epitope” that is clearly revealed with deep sequencing.
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Figure 1.20: Deep Sequencing of Peptide Selections on I-Ek Converges on One Dom-
inant Epitope for 2B4 TCR Recognition (A) Plots for amino acid prevalence at the
three primary TCR contact positions (P3 [cyan], P5 [magenta], and P8 [orange])
show that the peptide library enriches from even representation of all amino acids in
the preselection library to a WT-like motif at each position. A secondary preference
can be seen at P5 and P8 in round 3 but is outcompeted by round 4. (B) Sequence
enrichment of 250 most abundant peptides shows a convergence from a broad array
of sequences to a few clones. Area in gray represents all clones other than the most
prevalent 250. (C) Comparison of total number of peptides and prevalence of 10 most
abundant peptides for each round of selection. See also Figure S2.
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Furthermore, such intrapeptide residue coupling reveals how cross-reactivity can occur
through mutually compensatory substitutions to the parent peptide.

Although the selected ligands for all three TCRs possessed shared features, each
TCR also selected for a subset of sequences that were not selected by the other
two. We applied distance clustering to the peptides selected by all three TCRs to
determine whether all selected sequences were part of the larger MCC-like peptide
family or were distinct families ( Figure 3 C). We found that although sequences
recognized by individual TCRs clustered more closely to each other, essentially all
of the selected sequences formed one large cluster of peptides no more than three
amino acids different than at least one other peptide in the cluster ( Figures 3 C
and S3 B). Therefore, the selected peptides for all three TCRs are related via a
common specificity domain and, importantly, to the parent MCC ligand. Even though
we conducted unbiased selections of random libraries, the only ligands that were
recovered were remarkably similar to the WT ligand at the TCR interface.

Functional Characterization of I-E k Library Hits We synthesized 44 of the library
peptides selected for binding to the TCRs and examined their ability to stimulate T
cell blasts from 2B4 and 5cc7 transgenic mice as assayed by CD69 upregulation and
IL-2 production. The majority of the peptides predicted to bind 2B4 (19/19) and
5cc7 (17/21) expressing T cells induced CD69 upregulation ( Figures 4 A, 4B, and S4
A–S4D). The peptides had a wide range of potencies, including 50-fold more potent
than the WT peptide MCC (colored red). When we compared the presence of the
MCC-like TCR recognition epitope with TCR signaling, we found that in general,
sequences that shared the MCC-like epitope at all three major TCR contacts (colored
blue) were more potent in inducing signaling than those peptides that were more
distantly related (colored black) ( Figures 4 A and 4B). We also tested the peptides
selected for binding to one TCR for their ability to cross-react with the other MCC-
reactive T cells. Surprisingly, a large proportion of these peptides potently activated
TCR signaling ( Figures 4 A, 4B, and S4 A–S4D). In general, thesequencesthat showed
themostrobustactivationwere again the ones that most closely shared the MCC TCR-
binding epitope.
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Figure 1.21: Three Different MCC/I-Ek-Reactive TCRs Require a WT-like Recogni-
tion Motif in the Peptide Antigens (A) Heatmaps of amino acid preference by position
for 2B4 (left, red) 5cc7 (center, green), and 226 (right, blue) TCRs after three rounds
of selection. The sequence for MCC is represented via outlined boxes. TCR contact
residues are labeled red on the x axis. (B) Covariation analysis of TCR contact po-
sitions P5 (x axis) and P8 (y axis) show distinct coupling of amino acid preferences.
(C) Minimum distance clustering of all TCR sequences selected above background
shows that sequences for all TCRs form one large cluster with MCC (black circle,
not represented in library but added for reference). Sequence cluster is placed in a
representation of whole-library sequence space (left: 13 magnification, center: 10003
magnification) for reference.
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We additionally chose nine peptides from our initial set of 44 and exchanged them
into soluble I-E k MHC for TCR affinity measurements via surface plasmon resonance
(SPR). For 2B4 and 5cc7, TCR bound the pMHC of interest with affinities ranging
from K D of ~1 m M (over 10-fold better than that of MCC) to those with binding only
barely detectable at 100 m M TCR ( Figures S4 E and S4F). When we compared the
activity and affinity of our selected peptides, there is a loose but positive correlation
between strength of TCR-pMHC binding and potency of activation ( Figure 4 C).

The Structural Basis of TCR Recognition of Cross-Reactive Peptides Tode-
terminethemolecularbasisoftheTCRs’abilitytorecognize the most diverse peptides se-
lected from our I-E k libraries, we determined the crystal structures of 2B4 in complex
with a peptide termed 2A bound to I-E k as well as 5cc7 in complex with two peptides
bound to I-E k , termed 5c1 and 5c2 ( Table S1 ; Figures 5 A and 5B). When these
complexes were aligned with the previously solved TCR-pMHC complex structures
(2B4 and 226 binding MCC-I-E k ), very little deviation in overall TCR-pMHC com-
plex geometry was observed ( Figures 5 A and 5B) ( Newell et al., 2011 ). Because the
5cc7-MCC-I-E k complex is not solved, 5c1 and 5c2 were compared to 226-MCC-I-E
k , which shares the TCR b chain with 5cc7 and therefore likely retains a close foot-
print. The contacts between TCR germline-derived CDR1/2 loops and MHC helices,
which make up roughly 50% of the binding interface between TCR and pMHC, were
essentially unchanged in the new peptide complexes versus MCC ( Figure 5 C). When
we examined the chemistry of MCC versus 2A and MCC versus 5c1 peptide recogni-
tion by their respective TCRs, we saw that the interactions between the TCR a CDR
loops and the N-terminal halves of the peptides are essentially invariant ( Figures 5
A and 5B, lower panels). Each peptide backbone makes a hydrogen bond at the P3
carbonyl with Arg29 a in the TCR CDR1 a loop ( Figure S5 A). The contacts of 2B4
CDR3 a with P2 and P3 in MCC and 2A are essentially identical ( Figure 5 A, lower
panels). Although an exact analogy cannot be made between 5cc7 recognizing 5c1
and 226 recognizing MCC due to sequence differences in their CDR3 loops, 5cc7 and
226 CDR3 a loop conformations and peptide contacts are extremely similar ( Figure
5 B, lower panels).



CHAPTER 1. ESTABLISHING REPERTOIRE ANALYSIS TECHNOLOGIES 99

Figure 1.22: Relationships between Affinity and Activity of Peptides Selected for
Binding to I-Ek-Reactive TCRs (A) EC50s of IL-2 release and CD69 upregulation for
2B4 T cells stimulated with peptides selected with 2B4 TCR, plus MCC (red) (left),
or peptides selected with 226 or 5cc7 TCRs (right). Sequences with close homology
to MCC at P3, P5, and P8 are represented in blue. Sequences that do not share 3/3
TCR contacts with MCC are in black. (B) EC50s as in (A) for 5cc7 T cells with
peptides selected with 5cc7 (left) or 226/2B4 (right) TCRs. (C) Correlation between
TCR-pMHC affinity and peptide signaling potency. Each data point represents one
peptide.
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In contrast, 2B4 and 5cc7 b chain CDR loop interactions with the C-terminal
halves of the peptides show marked changes to accommodate the non-MCC sequences.
For 2B4, the CDR3 b loop conformation completely rearranges to engage the alternate
P5 and P8 residues on the 2A peptide ( Figure 5 A, lower panels). Gln100 b , a residue
that makes no contact with the peptide in the 2B4-MCC-I-E k complex, flips its side
chain by 180 degrees to form hydrogen bonds with the peptide backbone carbonyl
oxygens at P5 and P6 ( Figure 5 A, lower panels). The side chains of Trp98 b and
Ser99 b form hydrogen bonds with the P5 Ser hydroxyl moiety ( Figure 5 A). Asp101
b , one of the main contacts with P5 Lys in MCC, forms a hydrogen bond with Ser95
b on the other end of the CDR3 b loop, significantly altering the overall topology of
the loop ( Figure S5 B).

In the 5cc7-5c1-I-E k complex, there are fewer hydrogen bonds formed between
the peptide and TCR due to the replacement of P5 Lys with Leu in the 5c1 peptide
( Figure 5 B, lower panels). Asn98 b changes its hydrogen-bonding network from
engaging only the carbonyl of P6 on the MCC peptide backbone to simultaneously
interacting with the carbonyl oxygen of P6 and the amide nitrogen of P8 of the 5c1
peptide ( Figure 5 B). The second 5cc7-reactive peptide, 5c2, is recognized essentially
identically by 5cc7 as 5c1 despite the substitution of P5 to Arg ( Figure S5 C). The
substitution of a bulkier side chain at P8 (Phe instead of Thr) results in a rocking of
5cc7 such that the TCR C b FG loop is translated by 15 A˚ relative to the 226-MCC
structure ( Figures S5 D and S5E). It is interesting to note that all tested peptides with
P8 Phe signal less efficiently than MCClike peptides, even when affinities are closely
matched ( Figures S4 E and S4F). These structures raise the question of whether a
minor tilt of the TCR relative to the MHC can have consequences for signaling.

Upon closer inspection, we find that homologies between what appear to be un-
related peptide sequences emerge from sequence clustering and structural analysis.
For example, close structural relationships between the interaction modes of the 2B4-
reactive peptides MCC and 2A are apparent even though the peptides show little
homology at 4/5 TCR contact positions ( Figure 5 A). We set out to determine
whether we could identify intermediate sequences that would “evolutionarily” link
these two peptide sequences, given that both reside in the same sequence cluster (
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Figure 3 C). Using our data set of peptide sequences selected for 2B4 binding, we
were able to populate a family of peptides that would incrementally link MCC and
2A, with each peptide differing by only one TCR contact from the peptide before and
after it ( Figure 5 D). Thus, connectivity can be established between MCC and 2A
through stepwise single amino acid drifts from their parent sequences.

Collectively, despite differences in peptide sequences, all MCC and library-peptide-
derived complexes share many common features with regards to docking geometry
and interaction chemistry. Changes in up-facing peptide residue sequence (e.g., P5,
P8) are accommodated “locally” in a structurally parsimonious fashion that preserves
most of the parent MCC peptide complex features, as opposed to accommodation
through largescale repositioning of the CDR loops on the pMHC surface.

Development and Selection of a Human MHC Platform for Yeast Display To ex-
ploit our technology to find ligands for TCRs relevant to humandisease, wealso engi-
neered the humanMHC HLA-DR15, an allele with genetic linkage to multiple sclerosis
( Hafler et al., 2007; Patsopoulos et al., 2013 ). For yeast surface display, HLA-DR15
was constructed comparably to the murine I-E k b 1 a 1 mini MHC ( Figure 6 A). We
chose to examine two closely related TCRs, Ob.1A12 and Ob.2F3, that were cloned
from a patient with relapsing-remitting multiple sclerosis and recognize HLA-DR15
bound to an immunodominant epitope of myelin basic protein (MBP, residues 85–99)
( Wucherpfennig et al., 1994b ). These two TCRs utilize the same V a -J a and V b
-J b gene segments and differ at one position in the CDR3 a loop and two positions
in CDR3 b . Ob.1A12 is sufficient to cause disease in a humanized TCR transgenic
mouse model ( Harkiolaki et al., 2009; Hausmann et al., 1999; Madsen et al., 1999 ).
A structure of Ob.1A12 complexed with MBP-HLA-DR15 revealed an atypical dock-
ing mode, with the TCR shifted toward the N terminus of the peptide and primarily
interacting with a P2-His/P3-Phe TCR contact motif ( Figure 6 A) ( Hahn et al.,
2005; Wucherpfennig et al., 1994a ).

Because the initial WT MBP-HLA-DR15 yeast display construct was not stained
by Ob.1A12 TCR tetramers, we subjected the construct to error-prone mutagene-
sis and selected for binding with Ob.1A12. Our final construct combined the most
heavily selected mutation (Pro11Ser on HLA-DR15 b ) with two solubility-enhancing
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Figure 1.23: Peptides Distantly Related to MCC Show Highly Similar Mechanism of
Recognition and Linkages to the Cognate Antigen (A and B) Comparison of crystal
structures of TCR-pMHC complexes for 2B4-2A-I-Ek and 2B4-MCC-I-Ek (PDB ID:
3QIB) (A) and 5cc7-5c1-I-Ek and 226-MCC-I-Ek (PDB ID: 3QIU) (B). TCR contacts
are shown in magenta (top, noted with triangles). There is very little change in
overall binding geometry despite significant variation of peptide sequence. The TCRs
accommodate differences in peptide sequence primarily through differences in CDR3b
(bottom). (C) TCR CDR loop footprints for 2B4 recognizing MCC and 2A peptides,
226 recognizing MCC and MCC K99E peptides, and 5cc7 recognizing 5c1 and 5c2
peptides show very little deviation. (D) Relationship between MCC and 2A peptides
revealed through intermediate selected peptide sequences.
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mutations on the bottom of the MHC platform ( Figure S6 A). The final construct
stained robustly with Ob.1A12 and Ob.2F3 TCR tetramers ( Figure S6 B).

We designed a peptide library within the HLA-DR15 mini MHC scaffold to find
novel Ob.1A12and Ob.2F3-reactive peptides ( Figure 6 A). Given that Ob.1A12 binds
its cognate pMHC shifted toward the N terminus of the peptide, we extended the
library, randomizing from P(

4) to P10 ( Hahn et al., 2005 ). The P1 and P4 peptide anchors for HLA-DR15
were afforded limited diversity. When we selected with Ob.1A12 and Ob.2F3 TCRs,
we observed a strong convergence to a WT MBP-like TCR recognition motif for the
primary TCR contacts (P2 His, P3 Phe, and P5 Lys) (termed the “HF” motif) (
Figures 6 B, S6 C, and S6D).

Given the dominance of the HF motif in the selection results, we sought to de-
termine whether alternative cross-reactive TCR epitopes would emerge if the motif
were suppressed. We made a library that allowed every amino acid except for His at
P2, Phe at P3, and Lys at P5 ( Figure 6 C). After selection, the TCR-binding clones
still converged to a central HF motif by register shifting toward the C terminus of the
peptide by one amino acid, allowing the previous P4 Phe anchor to be repurposed
as the P3 TCR contact and the P3 position of the library to become the new P2
His TCR contact ( Figure 6 C). Furthermore, when we subsequently prevented both
His and Phe at P2 and P3 in a new library to suppress potential register shifting,
we did not isolate any Ob.1A12or Ob.2F3-binding peptides (data not shown). These
results show that the HF motif is required for TCR recognition and its enrichment is
a function of TCR preference, not any inherent biases caused by the library or MHC
anchor positions of the peptide.

Clustering analysis of the selected peptides for both Ob.1A12 and Ob.2F3 showed
distinct clusters consisting of peptides no more than four amino acids different from
each other ( Figure 6 D). When the stringency of clustering is increased to allow no
more than three amino acid differences, matching the analysis done for I-E k , there
were several more sparse clusters ( Figure S6 E). Because Ob1.A12 and Ob.2F3 are
so focused on the HF motif, there are fewer total hot-spot residues distributed on the
peptide compared to the MCC-reactive TCRs we studied.
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Figure 1.24: Design and Selection of HLA-DR15-Based Libraries for MBP-Reactive
Human TCRs (A) HLA-DR15 library design based upon structure of Ob.1A12-
MBP-HLA-DR15 complex. Residues P(4)–P10 are fully randomized, except for the
P1 and P4 anchors (in black). TCR contacts are colored magenta. (B) Heatmap of
amino acid preference by position for Ob.1A12 TCR. The sequence for MBP is rep-
resented via outlined boxes. TCR contacts are labeled red on the x axis. (C) Design
and selection results of library that suppresses central HF TCR recognition motif at
P2–P3 of peptide. Resulting register shift is shown in blue on x axis. (D) Sequence
clustering shows distinct, related clusters of selected peptides. Sequence cluster is
placed in a representation of whole-library sequence space (left: 13 magnification,
center: 10003 magnification) for reference.
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High-Confidence Prediction of Naturally Occurring TCR-Reactive Peptides The
surprisingly limited degeneracy of TCR recognition suggests that it may be feasible
to identify naturally occurring TCR ligands with a random peptide library. However,
library selections and deep sequencing alone are not sufficient to identify naturally
occurring ligands for two reasons. First, the size of yeast libraries relative to all
possible MHC-displayed peptides makes it unlikely that any given peptide sequence
exists in the library. Second, the amino acid substitutions that are permitted at
each position along the peptide represent a complex, and as our covariation analysis
indicated, cooperative interplay between the peptide, MHC, and TCR that may not
be well described by common substitution matrices such as BLOSUM ( Henikoff and
Henikoff, 1992 ). For example, even though manual inspection of Ob.1A12-binding
sequences readily shows the WT-like HF motif, the sequences do not find MBP as a
match in blastp searches (data not shown).

We therefore set out to develop an algorithm to use the aggregate data from our
selection results to inform searches for candidate TCR antigens. First, we created a
substitution matrix that used the positional frequency information derived from our
Ob.1A12 and Ob.2F3 deep-sequencing data ( Zhao et al., 2001 ).Because the limited
coverage of our libraries could lead to appearance of residue biases at noncritical (i.e.,
neutral) peptide positions that do not reflect actual selective pressure, we created a
new HLA-DR15-based library where we fixed the dominant Ob.1A12-binding motif
(P2 His, P3 Phe, and P5 Lys/ Arg) along with the P1 and P4 MHC-binding an-
chors, while randomizing the remaining residues. When the selected libraries were
sequenced, we found that whereas some proximal positions such as P( -1) and P( -2)
still showed distinct residue preferences, other positions such as P7 and P8 showed
less convergence relative to the original HLA-DR15 library ( Figure S7 A). The more
granular substitution data for peptide positions distal to the TCR-binding hot spot
allowed us to construct a more reliable algorithm.

We compiled two 14 3 20 substitution matrices consisting of the observed frequen-
cies of the 20 amino acids at each of the 14 positions of the library peptides from the
focused DR15 pMHC libraries selected by Ob.1A12 and Ob.2F3 ( Figures 7 A and
S7 A; Table S2 )( Zhao et al., 2001 ). Given that minimal residue covariation was
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Figure 1.25: Discovery of Naturally Occurring TCR Ligands through Deep Sequencing
and Substitution-Matrix-Based Homology Search (A) Schematic for ligand search
strategy, in which a positional substitution matrix is generated from deep-sequencing
data and then used to find naturally occurring peptides that are represented within
the matrix. (B) Functional characterization of a selection of naturally occurring
peptides with predicted activity. Activity is tested via proliferation of T cells when
exposed to peptide. Heatmaps are normalized to 10 mM dose of MBP peptide for
each T cell clone.
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observed for Ob.1A12 and Ob.2F3 selections, each position was treated independently
( Figure S7 B). Our peptide database search using the Ob.1A12-based matrix yielded
2,330 unique hits, including MBP. For the search based on the Ob.2F3 matrix, we
had 4,824 unique hits, again including MBP. The peptide hits shared the central P(
-1)-P5 motif of MBP, but the flanking residues showed very little sequence homology
to either MBP or each other ( Figure 7 B; Table S3 ). The predicted peptides are
from diverse microbial sources, such as bacteria; from environmental sources, such as
antigens expressed by plants; and from proteins in the human proteome.

To test our computationally predicted ligands for Ob.1A12 and Ob.2F3, we synthe-
sized a diverse set comprising 26 of the potentialenvironmentalantigensaswellas7nov-
elhumanpeptidespredicted to cross-react with Ob.1A12 and Ob.2F3. When we tested
the 33 putative ligands for activity, 25/26 of the environmental antigens and 6/7 of
the human peptides induced proliferation for Ob.1A12 and/or Ob.2F3, a success rate
of 94% ( Figure 7 B).

1.5.3 Discussion

The concept of TCR cross-reactivity is important because key aspects of T cell biology,
including thymic development, pathogen surveillance, autoimmunity, and transplant
rejection, seemingly require recognition of diverse ligands. In this study, we aimed
to define the mechanisms underlying TCR specificity and cross-reactivity using a
combinatorial, biochemical approach that yielded massive data sets based on direct
selection. This has given us insight into the structural basis of TCR cross-reactivity
and also provides a robust way to discover peptide ligands for a TCR of interest.

Our results clarify previous controversies on whether TCRs are highly cross-
reactive or highly specific by leveraging large amounts of experimental data found
via direct binding of pMHC to TCR. We find that structural principles allow for
the TCR to engage large numbers of unique pMHC without requiring degeneracy in
pMHC recognition. If the criterion of cross-reactivity is simply the number of unique
peptide sequences that can be recognized by any given TCR, then TCRs do exhibit
a high degree of cross-reactivity. Given that the libraries greatly undersample all
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possible sequence combinations, it is likely that our hundreds of discovered peptides
are emblematic of thousands of different peptides that can be recognized by the stud-
ied TCRs. However, when cross-reactive peptides are examined en masse, we find
conserved TCR-binding (i.e., up-facing) motifs. TCR cross-reactivity is not achieved
by each receptor recognizing a large number of unrelated peptide epitopes but rather
through greater tolerance for substitutions to peptide residues outside of the TCR
interface, differences in residues that contact the MHC, and relatively conservative
changes to the residues that contact the TCR CDR loops. The segregation of TCR
recognition and MHC binding allows for TCRs to simultaneously accommodate needs
for specificity and cross-reactivity.

Although we believe this mechanism will be general for ab TCRs, recognition of
nonhomologous antigens certainly occurs to varying degrees in the TCR repertoire,
although molecularly defined examples are surprisingly rare. The ability for one TCR
to bind to multiple MHCs (e.g., alloreactivity), for one TCR to bind in multiple orien-
tations on one MHC, for a peptide to noncanonically bind MHC (e.g., partially filled
MHC grooves, registershifted peptides), or for a TCR to have TCR-peptide contacts
as a disproportionately large or small part of the overall interface (e.g., “super-bulged”
peptides) will grant some receptors a greater degree of epitope promiscuity ( Adams
et al., 2011; Colf et al., 2007; Maynard et al., 2005; Morris and Allen, 2012; Morris
et al., 2011; Tynan et al., 2005 ). It is also possible that class I versus class II MHC-
specific TCRs could exhibit different degrees of cross-reactivity as a consequence of
the “low-lying” peptides in the class II groove, versus the elevated or “higherprofile”
peptides presented by class I. Indeed, in a prior study, multiple peptides reactive with
a class I-specific (H-2L d ) murine TCR were identified through manual curation, and
the structures indicated a diverse recognition chemistry by the TCR CDR3 loops (
Adams et al., 2011 ). In retrospect, a close inspection reveals striking commonali-
ties in the peptide-binding chemistry by the TCR, in particular a requirement for a
hydrophobic contact at the apex of the P7 “bulge” that forms the principal site of
contact with the TCR CDR3 b . In contrast, a second class I TCR, 2C, was not
found to exhibit peptide degeneracy, instead exhibiting specificity for its endogenous
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antigen, QL9, in a manner similar to that of the class II-specific TCRs studied here
(unpublished data).

An important implication of our findings, which is consistent with previous studies
( Macdonald et al., 2009 ), is that identification of endogenous antigens of TCRs is
feasible using pMHC libraries. In our previous view of cross-reactivity, we assumed
that a given TCR would cross-react with so many peptides in a library that elucidation
of “natural” leads from a background of degenerately binding sequences would be
extremely difficult. Additionally, the sparse coverage of possible sequences renders it
unlikely that any given sequence of interest will be represented with 100% identity in
our library. However, limited TCR epitope cross-reactivity allows us to use selection
results to constrain computational searches of protein databases, which proves to be
a highly successful strategy for finding naturally occurring TCR ligands. Thus, this
approach now opens up the possibility of peptide ligand discovery for “orphan” TCRs
such as those from regulatory T cells and tumor-infiltrating lymphocytes (TILs).

Although the naturally occurring peptides in this study were found as a proof of
principle for our methodology, they further support the hypothesis that autoimmune
T cells have the ability to be activated by immunogens encountered in the envi-
ronment, which may serve as the trigger for the initiation of autoimmunity ( De la
Herran-Arita et al., 2013; Harkiolaki et al., 2009; Hausmann et al., 1999; Wucherpfen-
nig and Strominger, 1995 ). Additionally, the potential for other human peptides to
cross-react with autoimmune TCRs with previously “known” antigens presents the
intriguing possibility that individual TCRs can recognize multiple self-peptides, po-
tentially contributing to T cell pathologies in autoimmune disease. This notion is
supported by the finding that a murine TCR specific for myelin-oligodendrocyte gly-
coprotein cross-reacts with a second CNS antigen, neurofilament M. Due to this unex-
pected cross-reactivity, these T cells remained pathogenic even in MOG-deficient mice
( Krishnamoorthy et al., 2009 ). Our approach for systematic discovery of peptides
recognized by human TCRs thus has the potential to advance our understanding of
complex pathogenesis of immune-mediated diseases.
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1.5.4 Methods

Creation and Selection of pMHC Libraries Peptide libraries were created through use
of mutagenic primers allowing all 20 amino acids via NNK codons. The libraries al-
lowed limited diversity at the known MHC anchor residues to maximize the number
of correctly folded and displayed pMHC clones in the library. Yeast libraries were
created by electroporation of competent EBY-100 cells via homologous recombination
of linearized pYAL vector and mutagenized pMHC construct essentially as described
previously ( Adams et al., 2011; Chao et al., 2006 ). Final libraries contained approx-
imately 2 3 10 8 yeast transformants. Yeast libraries were selected for binding to the
TCR of interest coupled to streptavidin-coated magnetic beads (Miltenyi) through
magnetic-activated cell sorting. After libraries enriched above the baseline of strepta-
vidin beads alone (typically after three rounds of selection), a final round of selection
was conducted with fluorescently labeled streptavidin tetramers.

Deep Sequencing of pMHC Libraries Pooled plasmids from 5 3 10 7 yeast from each
round of selection were isolated via yeast miniprep (Zymoprep II kit, Zymo Research)
and used as PCR template to prepare sequencing samples. The adaptor and barcode
sequences were appended via nested 25-round cycles of PCR of the purified plasmids
using Phusion polymerase (NEB). Deep sequencing was conducted on an Illumina
MiSeq sequencer at the Stanford Stem Cell Institute Genome Center.

Profile-Based Searches for Naturally Occurring Peptide Ligands The positional
frequencies from round 3 of the fixed HF library were used to generate a 14 3 20
substitution matrix. Each protein in the NR (NCBI) or human protein (Uniprot)
databases was scanned using a 14 position sliding window and scored as a product of
the positional substitution matrix ( Cockcroft and Osguthorpe, 1991 ). In this way, a
candidate peptide containing even a single disallowed substitution would be excluded
as a possible hit.

Structural Determination of pMHC-TCR Complexes All crystallographic data
were collected at the Stanford Synchroton Radiation Lightsource (Stanford, CA,
USA) beamlines 11-1 and 12-2. Data were indexed, integrated, and scaled using
either the XDS or the HKL-2000 program suites ( Kabsch, 2010; Otwinowski et
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al., 1997 ). All structures were solved via molecular replacement using the program
Phaser ( McCoy, 2007 ) and refined with Phenix ( Adams et al., 2010 ).

Extended Experimental Procedures Further details for the design, selection, and
sequencing of yeast display libraries; methods for production, characterization, and
crystallization of proteins; and computational discovery and functional validation of
peptide hits can be found online in the Extended Experimental Procedures.

ACCESSION NUMBERS
The coordinates and structure factors for the reported crystal structures are de-

posited in the Protein Data Bank (PDB) under PDB IDs 4P2O, 4P2Q, and 4P2R.
Deep-sequencing data can be accessed via the Sequence Read Archive (SRA) under
project code SRP040021.

Supplemental Information includes Extended Experimental Procedures, seven
figures, and three tables and can be found with this article online at http://dx.
doi.org/10.1016/j.cell.2014.03.047 .
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1.6 Reagent, sequencing & computational consider-

ations

High throughput sequencing is poised to change all aspects of the way antibodies, T-cell
receptors, and other binders are discovered and engineered. In synthetic immunology,
millions of available sequence reads provide an unprecedented sampling depth able to
guide the design and construction of effective, high quality naïve libraries containing
tens of billions of unique molecules. Furthermore, during selections, high through-
put sequencing enables quantitative tracing of enriched clones and position-specific
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guidance to amino acid variation under positive selection during antibody engineer-
ing. Successful application of the technologies relies on specific PCR reagent design,
correct sequencing platform selection, and effective use of computational tools and sta-
tistical measures to remove error, identify antibodies, estimate diversity, and extract
signatures of selection from the clone down to individual structural positions. Here
we review these considerations and discuss some of the remaining challenges to the
widespread adoption of the technology. We place particular emphasis on the controlled
setting of phage display libraries: in-vitro fixed repertoires that are of considerable
value in generating binding reagents, but also powerful control systems for optimizing
repertoire sequencing technologies without having to contend with the intra-individual
differences, tissue distributions, and dynamic change of repertoire composition over
time that is observed in in-vivo repertoires.

1.6.1 Introduction

Next generation sequencing (NGS) has transformed genomics. Its impact in antibody
and TCR receptor research has been slower, but is likely to be equally disruptive. In
many ways, the display technologies and deep sequencing are approaching a perfect
match as sequencing technologies improve. For synthetic antibody library analysis,
total numbers of bases sequenced is less important than the number of reads and
their length. Present sequencing technology is able to generate up to 40 million reads
from a single MiSeq run (figure 1). A an antibody repertoire, T-cell repertoire, or
displayed antibody library could potentially have a diversity at least 100 fold greater
(≥10^10), the true diversity of which can be estimated using the methods described
below. However, once these libraries are subject to selection by phage or yeast display,
diversity is reduced to ~10^6 after a single round, allowing comprehensive analysis of
the complete diversity of dozens of different selections in a single MiSeq run. After
two or more rounds of selection, diversity is reduced still further, and the percent-
age of positive clones increases significantly; making analysis of ≥100 selections in a
single run relatively straightforward. Read lengths vary, depending upon the technol-
ogy (figure 1). Although 454 and PacBio provide the longest reads, the higher read
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number and low cost have made paired end MiSeq (2x300bp) or Ion Torrent (400bp)
sequencing the most commonly used for library analysis. While MiSeq will completely
cover variable domains, encompassed by ≤600 bp (e.g. single Ig-like domain – VH
domain of a scFv, camelid VHH’s or fibronectin domains, smaller DARPINs, affibod-
ies), it is presently insufficient to completely cover both the VH and VL chains found
in an scFv in a single read. We expect this problem to be overcome as read lengths
increase with further technology development.

The convergence of these technologies is important in structural biology for the
increased use of antibody fragments [1] and other binders [2–4], as crystallization
chaperones. While such chaperones were originally derived from immunized animals,
recombinant display techniques using immunized or naïve binder sources as starting
materials has broadened the nature of molecules used to include synthetic recombinant
Fabs [5,6], designed ankyrin repeat proteins (DARPINs) [7–9], fibronectin domains
[10] and nanobodies [11]. Any method that simplifies the generation of suitable crys-
tallization chaperones is to be welcomed, and it is anticipated that the combination of
NGS with display technologies will facilitate the development of effective chaperones,
particularly if selection strategies can be specifically designed to select such molecules
directly.

Here we review the technology and the informatic analyses required before de-
scribing the insights that can be gained from the use of next generation sequencing
in library selection projects.

1.6.2 Sequencing technologies

The ability to assess the entire diversity of an antigen-specific sub-library allows
the identification of all unique species in a sub-library, independently of their relative
enrichment during the selection process. In fact, the wide span of relative abundances
within a selected population is a known bias in the random screening process [12,13].
NGS technologies can successfully interrogate, at the deepest levels, theoretically
every individual molecule, hence their increasing use in the screening of selected sub-
libraries.



CHAPTER 1. ESTABLISHING REPERTOIRE ANALYSIS TECHNOLOGIES122

Several NGS platforms, each with specific advantages and, usually, preferred appli-
cations, are available. As a general consideration, read length and depth of sequencing
are inversely proportional: technologies that provide the longest read lengths have
the lowest throughputs, and vice versa for platforms that favor depth over length.
The choice of sequencing usually lies in the nature of the selected library to be inves-
tigated: single scaffold synthetic libraries are generally easy to analyze because the
sequencing can be focused on that limited region of the scaffold molecule that en-
codes the diversity. NGS platforms generating short reads are preferred in this case.
Antibody-derived molecules, such as scFvs (single chain Fragment variable), repre-
sent a more complex scenario, where diversity is spread along a ~800bp-long gene.
In this specific case, full-length gene sequencing would be ideal. Sanger sequencing
provides sufficient read length, to cover the entire gene, but the low-throughput and
high expense only allows a very limited snapshot of the true diversity of the selection
process. At present among the different NGS platforms, PacBio is the only one able
to provide sufficiently long read lengths to cover the entire scFv, but to the detri-
ment of throughput [14] and read quality, where the ability to discriminate minimal
sequence differences with certainty[15] has had limited adoption.

For selection projects, where depth of sequencing is preferred, platforms that pro-
vide shorter reads become the obvious alternative. However, this imposes a choice
on the region of the gene that is to be analyzed. Roche’s 454 and Illumina’s MiSeq
paired-end sequencing allow the coverage of the entire VL or VH domain [14,16]. The
cheapest and fastest sequencing runs are provided by IonTorrent, and MiSeq single or
paired-end reads; here, the main drawback is represented by the read length, which
in the case of the single reads is sufficient to only partially cover one of the domains.
In this case, the general consensus is to analyze the heavy chain VH domain, as it
contains the complementarity determining region 3 (CDR3) as the primary signature
of clonality, as well as amino acid variation in H1 and H2, framework mutations, bio-
chemical liabilities in the variable domain and the identity of the V-gene and J-gene
scaffold elements. As shown in Figure 1, CDR3s have the highest variability of all
CDRs in both variable light (VL) and heavy (VH) domains, with HCDR3 being con-
sidered the principal determinant of specificity in antigen binding and, consequently,
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a surrogate for scFv identity in a naive library[17,18] due to its diversity in length and
aa composition[19,20]. The light chains are often sequenced as well, but given their
relatively low diversity, are usually insufficiently diverse to reliably and uniquely indi-
cate clonality. Efforts to utilize paired-end reads in the VH and the VL could provide
a means of tracking VL diversity for each HCDR3. Table 1 summarizes the features
of some of the most popular NGS platforms in selection projects.

The genetic material used to perform the NGS analysis on scFv-based libraries is
usually a plasmid preparation of the selected sublibrary, from which the relevant im-
munoglobulin coding regions can be extrapolated by PCR amplification; the relevant
coding regions, can consist of an entire scFv, an entire domain or just a portion of it,
according to the chosen platform.

The amplification step requires the design of primers complementary to the target
regions of interest; when the entire scFv gene or domain are sequenced (by PacBio,
454 or MiSeq paired ends), the use of external primers (mapping on the plasmid
or linker flanking regions) is to be preferred, as these anneal to constant sequence
elements. This provides the least biased means of amplification and makes the entire
variable domain accessible. Shorter amplicons have also been designed around specific
regions of interest by using multiple primers mapping upstream of the desired region
(i.e. HCDR3), but these primers need to be carefully designed, in order to avoid
amplification bias: due to the diversity of the antibody variable region frameworks, the
primers are usually designed for families of antibody genes (consensus sequences) able
to detect the highest number of gene segments[21]. As physical amplicon tolerances
and read lengths increase, invariant vector primers have emerged as a standard.

As a general consideration, the primers are designed to allow the amplification of
the target sequence and to carry adapters. These are platform-specific sequences that
allow: i) annealing of sequencing primers; ii) anchoring of the amplicon to beads or
other solid substrate during sequencing; iii) amplification of the single DNA molecule
on the solid substrate. The primers can be further modified to allow multiplexing:
the ability to sequence multiple selection outputs in a single run (Figure 2). Different
selections are distinguished from one another with short sequences, unique for each
selection inserted into the primers. This allows for significant reductions in costs as



CHAPTER 1. ESTABLISHING REPERTOIRE ANALYSIS TECHNOLOGIES124

(except for naïve library analysis) platform throughputs vastly exceed diversity in
most selection outputs, providing sufficient depth to allow comprehensive analysis.

Multiplexing is achieved by adding unique DNA sequences (usually 6–8 bp) at
the 5´ end of the gene-specific region on the primer (Figure 2). The sequencing of
the barcode, along with the gene sequence, allows for the association of a read to
a specific sub-library within the sequenced sample. Over 100 samples can easily be
barcoded using such schemes, and by extending the barcode length multiplexing can
be extended still further, and arbitrary numbers of samples could theoretically be
generated, with primer costs becoming the primary limitation. For high number of
multiplexed samples, the most efficient method is combinatorial barcoding: different
barcodes are added to each end of the sub-library-specific amplicon, thus allowing
for hundreds of different sub-libraries to be pooled and sequenced in a single run.
The NGS platforms most suitable for multiplexing are IonTorrent and Illumina, due
to their higher sequencing depths: a 10-fold coverage of the estimated sublibrary
diversity is a desirable feature that allows the minimization of the effects of PCR am-
plification and sequencing errors. Alternatively, when evaluating selections, a simple
rule of thumb can be applied: every sample should be performed in replicate to a
depth of 100k reads. The 100k read depth will allow any sequence occurring at a
frequency of 1e-4 (one in 10k reads) to be observed 10 times in each replicate on av-
erage, irrespective of how diverse the background library may be. As a consequence,
treating 1e-4 as a threshold of meaningful enrichment, this simple rule allows all sam-
ples from all panning rounds to be processed identically, sequenced to equal depth,
and analyzed in a comparable manner.

For antibody research a key aspect is to obtain the entire sequence of the highly
diverse antibody variable regions, which allows precise definition of the antibody [22].
At present, none of the existing NGS platforms can provide sufficient accuracy and
read length to characterize full-length scFv genes in a large sub-library. To overcome
these limitations, some methods have been proposed and successfully applied to the
characterization of naïve and immune repertoires: in one instance [14,23], two inde-
pendent MiSeq paired-end sequencings have been used to sequence the entire VL and
VH domains, while a third sequencing, coupled with appropriate bioinformatics tools
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(discussed in the next paragraph), aims to bridge the VL and VH pair. Alternatively,
the sequencing of a full-length scFv could be achieved in a single run by using the
same “bridging” approach, with 2 primers sequencing sequentially from the 2 ends,
and a third primer (or set of primers) bridging the gap starting from the framework
region 3 of the VL domain. The method is yet to be tested for feasibility.

Roche’s 454 is able to generate long reads, currently around 700 bp, making it well
suited for V region analysis, with the limitations of a limited number of reads (Table 1)
and significantly higher cost per run. MiSeq is cheaper, has much higher throughput
and a faster turnaround compared to 454. However, read lengths are shorter, making
it more appropriate for analyses of single variable domains. The reads obtainable by
Ion Torrent range from 35 to 400 bp, enough to cover the CDR3 region as well as a
single V domain (which will provide sequences of the other CDRs and help identify
the antibody family). The lower quality of the sequences and current read length are
the major drawbacks, while the main advantages are speed and low price per run.

Pacific Bio is a single DNA molecule sequencing platform that gives very long
reads, but with error rates >10%. While this is not a problem for genome assembly,
where it is now usually combined with other platforms [24–26], it has not been used
successfully for antibody analysis in a single pass mode. More recently, accuracy has
been significantly increased by circularizing DNA and sequencing it multiple times
[15]. However, throughput remains relatively low.

In a recent paper [21] we compare the use of 454, MiSeq and Ion Torrent to
sequence the same antibody library samples, and find that each method has its ad-
vantages, as outlined above.

1.6.3 Bioinformatics toolkits

The high-throughput sequence analysis of both naïve libraries and antibody library se-
lections follows a well-established series of common steps. First, any paired-end reads
are assembled. Next, all reads are screened to distinguish reads bearing antibody-like
content from off-target content [20]. Antibody analysis typically begins with iden-
tification of the V, D and J region segments found in each antibody using a known
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Figure 1.26: NGS sequencing on scFv genes. Variability plots for representative VL
and VH genes are shown, with the CDRs shaded in grey. Length coverage for the
most popular NGS platforms and scFv-based libraries targeted regions are shown.
For each platform, single or double directional arrows indicate single or paired-end
sequencing, respectively.

germline reference set (all methods). This reference set can be from any source,
but in practice is most often obtained from IMGT [27]. Identification of reference
segments enables somatic hypermutation analysis and statistical analysis of selective
forces favoring individual segments [28]. Segment analysis is insufficient for selection
interpretation, as antigen-driven selection acts not on the genetic elements directly,
but rather on the translated CDRs. Consequently, it is critical to identify the correct
frame of translation and obtain the translated CDR sequences.

The analysis of selection outputs is more straightforward than naïve library analy-
sis. Once individual reads have been analyzed, the relative abundance of all clones in
a selection is of great interest. To ensure accuracy, multiple sources of error, includ-
ing PCR error, read error, bioinformatic classification ambiguity and variable read
lengths, need to be accounted for. Once error processing is complete, clonal cluster-
ing can be used to gather de-facto identical clones, trace affinity maturation lineages
of related clones, and even identify convergent paratopes emerging after a selection.
The analysis of the clonal enrichment and clonal diversity of this final data can be
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used to trace individual clones across different panning rounds or selection pressures,
estimate the total diversity of responding clones after a selection, and even estimate
the total diversity of the selection output and the functional fitness of every amino
acid at every homologous position [18,29].

In the identification of the best lead antibodies to pursue, the translation of frame-
works and CDRs additionally enables annotation of biochemical and immunological
liabilities – these include non-synonymous framework mutations, N-linked glycosyla-
tion sites, deamination sites, acid hydrolysis sites, free cysteines, known aggregation
and destabilizing variation, domain truncations and other gross-defects caused by
library assembly.

The analysis of naïve unselected libraries, and assessments of total diversity, is
far more challenging, since total potential diversity (i.e. all VH+VL combinations)
almost always exceeds deep sequencing capacity (<108) (figure 3). Accumulation
analysis (i.e. counting number of unique clones observed) provides a lower bound
estimate of how many sequences exist in a library, and is necessarily incomplete when
the entire scFv or Fab fragment cannot be observed in a single sequence. While
accumulation analysis of diversity on individual CDRs is effective for H1, H2, L1,
L2 and L3, the H3 diversity alone can easily be greater than that of sequencing
depth, and in our experience is probably increased ten fold when diversity in the
remaining CDRs and frameworks are accounted for [20]. Furthermore, extrapolation
of total library diversity from individual CDR observations requires either strong
assumptions of positional independence, or sophisticated mathematical models of
positional relationships. More effective measures for library diversity estimation can
be borrowed from field ecology – the Fisher’s capture recapture [30] and the Chao
statistic [31] can both be used to estimate the number of unseen species on the basis
of the number and diversity of observed species, although both will likely return lower
bound estimates. To complement lower bound estimates, a higher-bound estimate can
be obtained by saturation analysis: subtracting the fraction of the repertoire taken
up by observed high frequency clones. However, these species richness estimators are
hindered by the presence of errors that inflate the number of rare species in the dataset
(see next section). Used together, the methods provide a low-bound and high-bound
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of diversity, allowing for a sensitive detection of library defects that reduce effective
library size below 109. (Figure 3).

1.6.4 Annotating receptor sequences

The diversity of repertoires poses a number of unique bioinformatics challenges,
compared with most other high-throughput sequence analysis applications (genomic
sequencing, transcriptomics, chip-SEQ, microbiome analysis, virome analysis, etc).
These involve mapping tens of millions of reads to a relatively finite reference set
of segments that is on the order of thousands to hundred of thousands of segments
(genes, exons, cDNAs, bacterial and viral genomes). In contrast, an antibody library
can easily contain a billion antibodies, drawn from a VDJ rearrangement capacity ex-
ceeding 100 trillion possible combinations in most known organisms [32], and a nearly
infinite molecular diversity (10^50) when considering somatic hypermutation, or syn-
thetic libraries created by highly diverse oligonucleotides. As a consequence, some
mapping shortcuts cannot be performed, and each read must be analyzed individu-
ally at early stages of repertoire analysis. This additional computational burden is
addressed either through distributed computing, typically on commercial cloud com-
puting environments, or research into novel parsimonious algorithms (regex-based
methods [21], the VDJ challenge [33]).

Segment identification is confounded by somatic hypermutation, codon-
reoptimized frameworks, read error, incomplete reads, and incomplete allele coverage.
Incorrect segment assignment is best avoided, as it can lead to artificial separation
of variants of the same clonal family in downstream analysis. For natural encodings
using segments from a wellcharacterized reference species, the majority of reads
can be reliably identified by best-blast based methods [34]. Read error will have
little effect on segment classification, as the majority of segments are easily distin-
guishable even given the burden of read error typical of high throughput sequencing
technologies. To improve accurate identification of segments in clones with high
degrees of somatic hypermutation or incomplete reads, a probabilistic classifier can
be used to assign confidence to the top hit, and reduce the resolution of assignment
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when necessary [20,28]. When working with codon reoptimized frameworks, a novel
reference segment database or segment assignment at the amino acid level can be
attempted. The D-segment, given its short length and vulnerability to trim back,
can often not be reliably classified in even the best circumstances.

Multiple analysis toolkits exist for the analysis of antibody library selections.
The LANL Antibody Mining toolbox [21] operated through nucleotide-level pattern
recognition of HCDR3 boundary elements. It is limited to frequency analysis of
CDR3 sequences from naturally encoded human libraries, but is the fastest of all
of the above algorithms, able to parse millions of reads in less than a minute, and
thus well-suited for analyzing enrichment of CDR-H3 clones from a naïve library
within minutes from a single computer. Most of the other toolkits provide analysis
of segment identities and VDJ junctional boundaries and alignments, but at an addi-
tional computational cost that requires distributed computing capabilities to process
millions of sequences efficiently. iHMMunalign uses a nucleotidelevel Bayesian Hid-
den Markov Model to assign probabilities to segment identities and VDJ junctional
boundaries [35]. The NIH/NIAID/CIT Joinsolver operates through a combination
of nucleotide-level CDR3 boundary motif recognition and parsed segment alignments
[36]. IMGT’s V-Quest benefits from wide breadth, performing analysis on BCRs,
TCRs and multiple species including human, mouse, rat rabbit and pig, as well as a
powerful reference database, classifying input sequences to their definitive reference
IMGT set [37]. IMGT has also expanded their analysis support by offering High
V-Quest, a web-based NGS compatible version currently able to handle up to 500k
batches of sequencings, providing full annotation of VDJ segments, CDR regions,
and somatic hypermutations [38]. The NIH Igblast performs blast-blast segment
classification and boundary recognition [34]. The VDJFasta algorithm is the most
generalizable tool, adapted for continued utility when analyzing very mutated anti-
bodies, engineered antibodies and novel species [20,28,29]. VDJFasta utilizes amino
acid profile Hidden Markov Models to identify CDRs and performs alignments by
amino acid homology, then assigns segments by a probabilistic classifier. It is able to
operate on any species without requiring a segment reference, as well as codon reop-
timized frameworks and other heavily engineered monoclonal libraries. It can be run
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either in a very fast CDR3 discovery mode, or in a more complete analytical mode
that recovers alignments, segments, CDR boundaries and biochemical liabilities. It
provides affinity maturation tree construction as an embedded feature of the toolkit,
unique among the other tools. ImmunediveRsity, is another stand-alone pipeline for
the analysis of antibody repertoire data, providing quality filtering, noise correction
and repertoire reconstruction based on VDJ assignment, clonal origin and unique
VH identification. Finally, the very recently published open-access software MiXCR
uses an advanced alignment algorithm that enables rapid annotation of germline seg-
ments, CDRs, SHMs, and error correction (see next section for more), processing
10^7 sequence reads in minutes [39].

In addition to academically available command line resources, a set of industrial
platforms, including Adaptive Analytics and the Distributed Bio AbGenesis platform,
have also emerged as solutions for non-technical users. Open source community por-
tals, such as receptormarker.com, have emerged as free academic user interfaces for
specific applications [40].

The amino acid diversity of immunoglobulins presents a challenge for accurate
CDR identification: even 10% of the Kabat database is estimated to be mis-numbered
by their own classification system [41]. Motif-based CDR boundary recognition meth-
ods can often be used to recognize CDRs, but they will fail in more heavily mutated
antibodies, engineered antibodies, and antibodies from novel species. Profile Hidden
Markov Model (HMM) based Bayesian methods have emerged as powerful tools for
CDR recognition, given their ability to recognize homology signatures of the frame-
works to aid in contextualizing CDR diversity [20]. Such tools can operate at the
nucleotide [35] or amino acid [20] level. However, they tend to be slower than mo-
tif based CDR recognition, and require longer CDR flanking sequences to function,
when considering naturally encoded human antibody libraries [21]. HMMs provide
a substantial advantage when analyzing codon optimized libraries, novel species, or
highly affinity matured antibodies such as broadly neutralizing HIV repertoires, as
the amino acid homology signatures are more robust to mutation and do not require
nucleotide motif re-definition with each new species.
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Figure 1.27: A) Schematic representation of NGS barcoded primers. Primers on
conserved regions flanking the diversity carry barcode sequencing and NGS-specific
adapters. The PCR product contains a unique identifier (barcode) for a specific
library. Multiple amplicon libraries can be pooled in a unique sample and sequenced
together. Each single sequenced DNA fragment is associated to a specific library
based on its barcode. B) An amplicon library can also be generated with the inclusion
of a Unique Molecular Identifier (UMI) sequence, which are added at an initial step
(e.g., first-strand cDNA synthesis) resulting in each molecule of a library being tagged
with a UMI. Similar to A), amplicons can be sequenced in a multiplex fashion but
following NGS, sequences with identical UMIs are grouped together for consensus
building-based error correction.
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1.6.5 Error correction

Another challenge in repertoire analysis, particularly the assessment of naïve library
diversity, is the presence of errors, as all sequencing technologies are susceptible to
read error [42]. Compounding errors introduced by the sequencing platform is the
fact that antibody library preparation requires PCR amplification, where DNA poly-
merase can also produce additional errors. Furthermore, unlike genome or transcrip-
tome sequencing where errors can often be simply corrected by read-based consensus
building or alignment with a reference genome/transcriptome, antibodies undergo so-
matic hypermutation making it difficult to distinguish between technical errors versus
true biological mutations without an informatics-based error correction method.

Fortunately, the analysis of antibody repertoires, and in particular selections, is
somewhat unique in that many types of read error have minimal impact on quan-
tifiable features. Read error has little effect on segment identification, as it intro-
duces proportionally less variation than somatic hypermutation into the underlying
sequences. In analysis of positional amino acid frequencies in a total library, the read
error rate will typically introduce less than 1% noise to observed frequencies. In se-
lections, the reads of greatest interest will have the greatest depth of coverage, having
expanded in the pool and thus receiving greater proportional read depth.

The greatest challenges lie in analysis of non-expanded clones or accurate total
repertoire diversity. Errors in the CDR3 region could alter clonal diversity measure-
ments if 100% CDR3 identity is used as the definition for clonality. The fact that
CDR3 regions themselves are considered hotspots for somatic hypermutation adds
further complexity to this problem. Recently the impact of errors was comprehen-
sively evaluated where high-throughput sequencing (Illumina HiSeq) was performed
on a “model repertoire” consisting of seven monoclonal cell lines expressing antibodies
or TCRs [43]. Following, sequencing and annotation of CDR3 regions, there was a
large number of false positive clones detected, which would have resulted in a drastic
overestimation of clonal diversity. Indeed our results corroborate this. Following du-
plicate (using two different barcodes) Ion Torrent sequencing of the HCDR3 of a single
VH region >99.5% of the ~80,000 sequences in each were correct. The remaining 0.5%
comprised 166 unique HCDR3 false positives. ~40% were found in both barcodes,
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and the remaining sequences were unique to each barcode. Although the majority
of these were 1, 2 or 3 amino acid mutations away from the original HCDR3, there
were also a number of unrelated HCDR3s, thought to be the result of contamination
(unpublished data Bradbury group).

Despite the presence of errors, simple methods of informatics processing and filter-
ing can be utilized to achieve partial correction. One example is CDR-based clustering
at the amino acid level (used in the example above), a method that minimizes the
footprint of read error to non-synonymous mutations in the paratope and accounts for
the majority of read error, which will be single nucleotide mutations away from a true
clone [20]. Another is frequency-based consensus building. At the depth of sequencing
now available, higher frequency clones will often result in hundreds (or thousands) of
reads, while the majority of their read error variants will typically appear as single-
tons that are often only a single nucleotide away from the correct higher-frequency
read. Thus these singletons can be dropped from analysis or corrected by consensus
alignment to the higher frequency clone [16]. Another method to alleviate overesti-
mation of clonal diversity is to apply clonotyping, which is the grouping of similar
CDR3s (e.g., 80%, 90% identity) [44], although, measuring intraclonal diversity or
the number of somatic variants would still not be possible. Treebased single-linkage
clustering methods are useful in libraries derived from natural repertoires where in
vivo affinity maturation will generate complex SHM trees as well as read errors that
may not resolve accurately by other clustering approaches [28]. In addition, another
approach to partially overcome errors would be to perform replicate sequencing, in
such a case only clones present in both replicates would be considered reliable [45–47].
However, this would not correct for reproducible sequencing or PCR hotspot errors;
for example in our aforementioned sequencing experiment that resulted in 166 false
positive HCDR3s, common false HCDR3s were found in both datasets. Others have
also observed this phenomenon of reproducible systematic errors in NGS [43,48]. So
while these methods are easy to implement and do improve repertoire accuracy, they
still fail to provide fully accurate measurements of somatic hypermutation or clonal
diversity, thus making more advanced methods necessary.
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In order to correct for errors in NGS, several variations of an advanced method
have been developed which rely on library preparation with unique molecular identi-
fiers (UMIs, which are also known as unique identifiers, barcodes, molecular identifiers
groups, primer IDs); UMIs are a stretch of degenerate nucleotides (e.g., NNNNNNNN)
that are typically added to mRNA or cDNA molecules via reverse transcription or lig-
ation [49,50]. Thus when PCR or sequencing introduces errors, these can be corrected
by grouping sequences that share a common UMI and correcting variant sequences to
the group’s consensus sequence [51] (Figure 2B). The consensus is typically the cor-
rect sequence since all sequences with a common UMI are assumed to be derived from
the same original template molecule. Recently UMI addition has also been applied
for antibody repertoire sequencing. In one example, UMIs were incorporated into
forward and reverse primers and added during first and second strand cDNA synthe-
sis, which was combined with replicate sequencing to improve the accuracy of human
B cell repertoires obtained from vaccinated individuals [52]. While UMI-based con-
sensus building enables correction of sequencing errors, it does not address all PCR
errors. For example, a polymerase-introduced error in an early PCR cycle that ends
up becoming the majority positional nucleotide for that UMI group would result in a
false consensus built sequence variant. While this might be considered a rare event,
several reports have identified that this is more common than once believed [48,53].
To date the only method that has been developed to correct for PCR errors is based
on UMI-labeling of cDNA followed by a read-gain/loss secondary correction (filtering)
step [43]. Here, the original sequences or clone read counts are compared to those
after consensus building. Since these early PCR errors tend to be systematic and
reproducible, they will often appear in multiple UMI groups in later rounds of am-
plification. This phenomena leads to an overall greater number of erroneous variants
being corrected, resulting in a net loss of erroneous sequence variants. This method
when applied to a control repertoire was able to achieve nearly absolute error correc-
tion (removal of all false positive CDR3 variants) [43]. All UMIbased error correction
methods require oversampling of UMIs (each UMI ≥ 3 reads). However, this has been
challenging to accomplish, as it either requires a very high read depth or precise sam-
ple preparation and quantification methods to achieve adequate, but not excessive
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oversampling. This sample preparation precision has yet to be fully standardized for
antibody sequencing. Finally, it has also emerged that errors introduced to the UMIs
themselves are substantially present and will thus need to be addressed in the future
[53,54].

1.6.6 Repertoire size estimation

The size of naïve antibody libraries has been generally assessed by counting the
number of bacterial colonies on a dilution plate after transformation, and multiplying
accordingly, making the assumption that each bacterial colony represents a unique
antibody. While this assumption may be reasonable in synthetic libraries, in which
potential diversity usually exceeds actual diversity by orders of magnitude, this may
be less true for libraries prepared from natural sources in which clonal dominance may
occur if the number of donors is limited. The ability to sequence millions of antibodies
in a naïve library allows a far more accurate assessment of diversity. The heavy chain
variable region, and in particular, the heavy chain CDR3, are considered to be the
most important determinants of recognition [17,18,55], exemplified by experiments
in which HCDR3 sequences from an anti-lysozyme VHH antibody (VHH) [56] were
transplanted into neocarzinostatin [57] and sfGFP [58], conferring lysozyme binding
activity. HCDR3’s have even been harvested as diversity elements [59,60] and binders
have been selected from libraries in which they provided the only diversity [18,58].
As a result, deep sequencing initially concentrated on HCDR3, expanding to VH as
read lengths increased. One somewhat surprising result from naïve natural library
sequencing [20,21], is that lower bound estimates of heavy chain diversity, 3x106
unique clones (40 donors, ref [21]) and as little as 2x105 (~654 donors, ref [20])
paratopes differing by at least 2 amino acids to any other, assessed using different
methods, are significantly less than the almost limitless potential diversity of human
VH rearrangement [32], and far closer to the VH diversity found in any single person
(106–7) [32]. Given that most VH sequences are unique to an individual [14,28], unlike
VL sequences, which are more commonly public [14], one would expect the number of
unique VH sequences in a natural library to increase with the number of donors. That
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Figure 1.28: Estimating upper and lower diversity bounds as a function of sequencing
depth. Maximum theoretical diversity is the total number of unique molecules that
could exist in a library of this design if the number of transformants were infinite.
Maximum transformant diversity is the maximum library size if every molecule in the
library was non-redundant. Minimum observed diversity is the accumulated diversity
observed from sequencing: the number of different clones actually seen. Minimum
diversity estimated by capture-recapture methods more rapidly approaches the true
diversity of the library, by anticipating library diversity from subsample overlap.
Maximum diversity can be calculated by extracting known library redundancy from
the transformation size. Actual diversity is the number of unique clones in the library.
All measures convergence on true diversity with increasing sampling depth, although
libraries with “long tails” of rare clones will converge slowly.
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this does not appear to be the case is likely to be a consequence of library construction
methods. In both the described cases of naïve natural library sequencing [20,21], V
region amplifications were carried out on pools of B cell cDNA from different donors
using pools of specific primers [61]. The extent of multiplex primer bias in repertoire
sequencing has recently been carefully evaluated using 56 synthetic templates of all
human TCR V-alpha genes, which revealed substantial bias, as in some cases entire V
genes were not amplified at all [62]. Therefore multiplex PCR with pools of primers
may be expected to bias amplification towards templates with more favorable primer-
specific regions, as well as VH genes that are more abundant. One way to overcome
bias would be to use both optimized primer concentrations and informatics correction,
however this requires rather in-depth and sophisticated characterization studies [62].
Another possibility would be to use individual primer pairs on each individual, or
small pools of individuals, rather than pooled, B cell cDNA. Although one very large
library has been created using this approach [63], it has not been analyzed by deep
sequencing.

For synthetic libraries, theoretical diversity in the heavy chain (but not usually
the light chain) can vastly exceed the diversity achievable by bacterial transforma-
tion, depending on the design. This is confirmed by NGS: in an appropriately de-
signed library, the vast majority of clones occurs only once, even when applying strict
paratope distance measures to ensure that read error isn’t artificially inflating the
result [12,29,64,65].

For both natural and synthetic libraries, if VL and VH chains are assorted inde-
pendently, library diversity increases enormously. This makes most sequences unique,
and validates the colony counting approach to estimate library size. However, if con-
struction methods (e.g. assembly PCR) are used where opportunities for clonal dom-
inance exist, diversity may be overestimated by colony counting, and can only be
assessed by NGS.
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Figure 1.29: Relative abundance and affinity. Panel A: the experimentally measured
kDs (nM) of selected clones are plotted in relation to their ranking position in the
sequenced selection output (i.e. the clone in ranking position 1 has the highest relative
abundance in the selection output). Average affinity of the clones (black) and antigen
concentration used in the selection process (red) are shown as dotted lines. Data
collected for three different antigen selections (ESAT6, Antigen85, and Ubiquitin)
are reported. Panel B: ranking and affinity plots are shown for anti CDK2 selection
at different antigen concentrations. The affinities of identical clones (identified by
the same symbol in the 2 plots) found in sequenced populations selected at different
antigen concentrations are shown in relation to their ranking position. P-values for
significant correlation are reported.
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1.6.7 Quality control and repertoire design

In addition to assessing diversity, NGS has been proposed as a straightforward method
to quality control libraries after they have been created [64]. Sequencing provides
accurate information on the percentages of clones that are non-functional due to stop
codons or frame shifts; assesses how close actual diversity of synthetic libraries is to
designed diversity; assesses the randomness of VH/VL linkage; and can assess library
redundancy due to contaminants or clonal dominance.

Even when clones appear correct on the basis of sequence, they may be nonfunc-
tional. For synthetic libraries, diversity may be functionally reduced by sequences
that prevent correct folding, or are polyreactive, due to inappropriate amino acid
choices in complementarity determining regions (CDRs) [66]. In the case of natural
libraries, reduced functionality may be caused by excessively mutated V regions which
display poorly [67], or by the restricted recognition properties of libraries with reduced
VH diversity, given that VH is the major determinant of antibody recognition. The
deep sequencing and analysis of well (and poorly) folding, or non-aggregating [68],
antibody variable regions will result in the gradual accumulation of data on amino
acid preferences at different positions (e.g. see refs [69,70]), which in turn will feed
back into library design and more sophisticated functional quality control analyses
that go beyond the mere identification of open reading frames.

For both library classes incompatible VH/VL pairs are also likely to reduce func-
tional diversity. While there is likely to be significant individual variation, this may
be mitigated by choosing known functional VH/VL pairs[65]. In addition to analyz-
ing final library diversity, NGS can be used to monitor fidelity of components during
construction [29]. It is expected that its continued use after each step of library con-
struction will allow the direct analysis of the roles of different construction strategies
in the generation, or loss, of diversity in the future, allowing more efficient library
construction. The unexpected relatively low final VH diversity described in the two
libraries above, could be better understood if NGS was applied to intermediate steps
in the construction process, and indicate the insight NGS can bring to library creation
methods.
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Table 1.5: Comparative features of NGS platforms

1.6.8 Selections

Target specific—One of the paradoxes in the early days of selection from antibody li-
braries was the inconsistency between the number of identified unique positive clones
selected from large libraries, and the number of clones expected from theoretical cal-
culations [71], or the scale up of the selection result from small libraries [72,73]. While
the number of unique positive clones will depend upon the complexity of the anti-
gen, the threshold affinity and the number of clones screened, practical experiments
[72,73] indicate that it should be possible to select 1–5 positive clones from libraries
with a diversity of 107, suggesting that libraries 100 fold greater in size (~109) should
yield 100–500 unique binders. In general, this has not been the case, unless extreme
efforts have been taken to carry out selection under many different conditions [74].
Deep sequencing of selection outputs reveals that this is a combination of libraries
not being as diverse as anticipated, and also that the recovery of unique clones poses
a sampling problem: when only 96–384 clones are tested in different selection exper-
iments, sometimes not even the ten most abundant clones can be identified [12,75].
Furthermore, when 96/384 clones are randomly picked, most are duplicates of abun-
dant clones, while others represent single copies of far less abundant clones [76]. In
our experience, such rare clones may individually comprise less than 0.001% of the
selection output, and yet still be positive for the target, indicating that the only way
to identify the full spectrum of binding antibodies after selection is to sequence and
rank the complete output. This of course makes it even more paramount to apply
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error correction methods, as otherwise true rare clones would not be able to be dis-
tinguished from errors. However, sequencing needs to be sufficiently deep that such
clones are seen multiple times as read error correction cannot be carried out on single
sequences. Sequence identification, however, is not the same as clone isolation. Once
identified, clones can be isolated with inverse PCR [77], using the HCDR3 as a bar-
code for outward facing primers [78,79]. In order to reduce the numbers of primers
required, arbitrary screening can be used initially. This usually provides many of the
commonest clones, as well as a random selection of rarer ones, which, after individual
sequencing, can be mapped back to the ranked list of antibodies. Inverse PCR can
then be used to isolate missed clones.

NGS has also shown that the pattern of diversity found in selection outputs against
different targets can be very variable. In some cases selections are dominated by single
HCDR3s (or VHs), while in other cases, diversity is far broader. However, even when
responses are relatively monoclonal, less abundant clones isolated by inverse PCR, are
positive. Given their low abundance, NGS is the only way that these rare clones can
be identified, as they cannot be found by standard screening methods. In these cases
NGS is able to rescue selections that would otherwise have been considered failures
due to their apparent limited diversities.

Identification of clones with desirable properties—Initial experiments in which
antibodies were ranked for abundance after phage/yeast display selection and deep
sequencing surprisingly revealed no correlation between affinity and abundance for
all targets we have tested (fig 4a). In these experiments target concentration was
kept relatively high (~200nM), in order to preserve binding diversity, but as can be
seen, the antibodies with the highest affinities (lowest Kd) are usually the less abun-
dant ones. We believe this is because all antibodies with Kds lower than the target
concentration used for sorting will bind approximately similar amounts of antigen,
providing them with no selective advantage over antibodies with better affinities. As
target concentration is reduced, only those yeast displaying antibodies with lower
Kds are able to capture target. Further analysis revealed that at the lowest target
concentration at which positive yeast can be identified by flow cytometry, there is a
far better correlation between abundance rank and affinity (fig 4b). Consequently, we
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believe NGS can be used to identify antibodies with the best affinities in a binding
population, by sorting with diminishing target concentrations, and sequencing the
output of the lowest target concentration that yields a positive population. Under
these conditions, the most abundant antibodies will tend to be those with the lowest
Kds. It is likely that similar approaches can be taken to similarly optimize individual
steps in the selection process, including washing, temperature, incubation times and
elution methods for phage display as well.

In addition to sequencing the outputs of target-specific selections, it will also be
possible to apply deep sequencing to the analysis of common desirable antibody traits,
such as thermostability [80], binding to protein A [81] or high display/expression
levels [82], and other developability traits. We anticipate this can be carried out on
individual target specific selections, or by sequencing complete libraries subjected to
particular selection gates. In the latter case it may be possible to identify common
sequence features correlated with desired properties, which could then be used to
build and improve subsequent libraries, as described above. Such approaches could be
powerfully combined with structural modeling and prediction using in silico prediction
tools (e.g., Rosetta, MOE, Discovery studio) [83–86].

Identification of common clones—When display methods are used to generate an-
tibodies, the selection targets are more complex than assumed. Antigens are usually
biotinylated [87], which introduces additional complications: the presence of the bi-
otin, the chemical moiety linking the biotin to the protein and the streptavidin (which
itself may or may not be modified). Further, many targets are expressed recombi-
nantly, and include common domains, such as peptide tags recognized by antibodies,
fusion protein or His tags (see [88] for a review). All these additional common compo-
nents can themselves, become targets for selection, potentially leading to antibodies
that do not recognize the specific target but the common feature. Although appropri-
ate controls and negative selections usually allow the elimination of such apparently
cross-reactive antibodies, NGS can also be used to identify them after selection. In a
recent paper [89], polyclonal antibodies selected from a large naïve library [90] created
by recombination [91] using phage/yeast display [76,92] against a series of in vitro
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biotinylated proteins were found to be strongly crossreactive with other targets. Care-
ful analysis of the cross-reactivity revealed the polyclonal antibody pool recognized
proteins biotinylated using a particular kit (Lightening Link), but not if biotinylated
with other kits or in vivo. Deep sequencing of the antibody populations showing
this cross-reactivity identified one common antibody in all the selections, which when
tested, was found to recognize the Lightening Link biotinylation site [89]. A similar
approach could be adapted to the identification of antibodies recognizing epitopes in
common between different targets and enable informatics based library removal: e.g.
human and murine versions of the same protein, or related therapeutic targets.
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Chapter 2

Reading Specificity with Convergence

Analysis

2.1 Introduction

A memory of all our past immunological battles is stored in our blood. Unfortunately,
extracting and interpreting immunological histories from the complex B-cell and T-
cell receptor repertoires and cellular phenotypes has remained an unsolved problem.
The problem has been one of diversity: while the human genome contains approxi-
mately 25 thousand genes, a single human’s T-cells present approximately 100 million
unique T-cell receptors. These receptors recognize a limited set of peptide antigens
out of hundreds of trillions of possible variants, each displayed by a few out of 10
thousand possible HLA alleles strewn across human populations. As a consequence,
common B-cell receptors and T-cell receptors are rarely encountered across individ-
uals, and although sequencing technologies presented in Chapter 1 enable millions
of receptors to be read in a single experiment, it has not been possible to recognize
nearly any of them from previous studies and therefore it has not been possible to read
specificity from the adaptive repertoire. What is needed is a statistical framework for
interpreting systems that are more diverse than can be carried in a body.

In chapture 2, we present convergence analysis: a statistical method for decoding
specificity from the complexity of the interacting molecules of the adaptive immune
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system. In the first study, “Identifying specificity groups in the T-cell receptor reper-
toire,” by Glanville and Huang in Nature 2017, we present the GLIPH, Grouping of
Lymphocyte Interations by Paratope Hotspots, a clustering algorithm that is able to
identify T-cell receptors that recognize the same antigen, predict the MHC restriction
of those TCRs, and aid in the identification of their target antigen. In the second
study, “A highly focused antigen receptor repertoire characterizes γδT cells that are
poised to make IL-17 rapidly in naive animals,” we expand the analysis of convergence
TCRs to include γδ T cells, illustrating that a convergence of receptor is correlated to
a convergence of phenotype. In the third study, “IGHV1-69 polymorphism modulates
anti-influenza antibody repertoires, correlates with IGHV utilization shifts and varies
by ethnicity,” we demonstrate convergence analysis in B-cell receptors and antibodies,
identifying a broadly neutralizing influenza HA-stem directed convergence group that
can be identified from primary sequence, is predicated on allelic variation in the naive
repertoire, and is predictive of seroconversion. In the fourth chapter, “Successful im-
munotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets,”
we generalize the method of convergence analysis beyond amino acid variation at ho-
mologous molecular positions to any system where selection acts on only a subset of
dimensionality, demonstrating that convergence of single-cell phenotypes can grant
clarity to the analysis of oral immunotherapy for peanut allergy.

In the course of each study, multiple applications of convergence analysis are
establish. First, it provides a means of clustering receptors and cells of common
function and specificity. Second, it provides a means of “reading the repertoire:”
predicting new members of the previously identified clusters. When the HLA genotype
is available, the approach provides a method for predicting the MHC constriction,
and rapidly de-orphaning TCRs. Finally, in both the TCR and BCR cases, it has
demonstrated that the methods are sufficiently robust as to predict new de novo
binders against targets, and in the case of TCRs, generate de novo binders with
superior activation properties to the naturally observed receptors. This result opens
up convergence analysis as a tool for optimization of receptors beyond their behavior
encountered in nature.
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2.2 Reading specificity in the αβ T-cell receptor

repertoire

T Cell Receptor (TCR) sequences are very diverse, with many more possible sequence
combinations than T cells in any one individual(1-4). To better understand how
TCR antigen recognition is shared between individuals, here we define the minimal
requirements for TCR antigen specificity, through a comprehensive analysis of 2068
unique TCRs of known specificity from 33 donors and a panel of pMHC tetramer
sorted cells, as well as public TCR-pMHC complex structures. With this data we
developed an algorithm - GLIPH, Grouping of Lymphocyte Interactions by Paratope
Hotspots, to cluster TCRs that have a high probability of sharing specificity due
to both conserved motifs and global similarity of CDR3s. After training on this
data, we demonstrate that GLIPH could reliably group TCRs of common specificity
from different donors, with the conserved CDR3 motifs that help define the TCR
clusters often being contact points with the antigenic peptides. As an independent
validation test set, we analyzed 5711 TCR β chain sequences from Mycobacterium
tuberculosis (Mtb) reactive CD4+ T cells from 22 latent Mtb-infected subjects. We
find 141 TCR specificity groups, including 16 distinct groups containing TCRs from
multiple subjects. These TCR groups typically shared HLA alleles making it possible
to successfully predict the HLA restriction, and a large collection of Mtb T cell
epitopes enabled us to identify peptide-MHC ligands for all five of the groups tested.
Mutagenesis and de novo TCR design confirmed the GLIPH identified motifs were
critical and sufficient for shared antigen recognition. Thus the GLIPH algorithm can
analyze large numbers of TCR sequences and define TCR specificity groups shared by
TCRs and individuals, which by itself could greatly accelerate our ability to analyze
T cell responses and expedite the identification of specific peptide-MHC ligands.

2.2.1 Introduction

The adaptive immune system uses a highly diverse population of T lymphocytes to
selectively recognize and respond to antigenic proteins. Individual T lymphocytes
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generate and express single recombinants from a massive repertoire of combinatori-
ally generated T-cell receptors (TCRs) with diversification mechanisms that could
theoretically produce in excess of (~10^16) unique heterodimers(4). Because of this
extreme diversity, individuals typically share only ~1% of their TCR seqences, and
even monozygotic twins-with identical HLA haplotypes, only share ~2%(1,3,24,25).
The major αβ form of the TCR heterodimer typically recognizes peptide fragments
of larger proteins, bound to major histocompatibility complex (MHC) or related
molecules and displayed on the cell surface(26). The unique TCR recombinantly pro-
duced by each T lymphocyte imbues it with a unique TCR specificity – the ability
to selectively recognize and respond to a given peptide-MHC (pMHC) complex or set
of complexes. While αβ TCRs are highly specific for a given peptide-MHC ligand,
such that a small change in an amino acid side chain of the peptide or TCR is suffi-
cient to eliminate binding, it is also very common for there to be cross-reactivity to
similar and even non-homologous peptides bound to the same or a different MHC.
This appears to be due to a flexibility in the TCR binding site, allowing multiple sta-
ble conformations27. Although advances in high-throughput sequencing technologies
now enable the routine analysis of millions of T-cell receptors in a single experiment,
there has been no systematic way to organize groups of TCR sequences according to
their likely antigen specificities.

2.2.2 Results

To address this problem, we performed a comprehensive analysis of all published
structural data of TCR-pMHC complexes. We aligned the TCR amino acid sequences
from all 52 of the structures of TCR-pMHC complexes that have been reported, and
for each alignment position calculated the proportion of all complexes where the
residue at that position was within 5 Angstroms from the peptide antigen (Extended
Data Fig. 1, Supplementary Table 2). This provided an a-priori probability of contact
for every position in a TCR. The results showed that the majority of antigen peptide
contacts were in TCR CDR3s, and only short, typically linear stretches of amino
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acids in particular regions of CDR3s make contact with antigen(IMGT positions 107-
116), while the majority of CDR positions did not contribute to ligand contact and
in particular the stem positions of CDR3 (IMGT positions 104, 105, 106, 117, and
118) are never within 5 Angstroms of antigen(9). We also note that whereas there is
always at least one CDR3β contact, there are multiple cases where no CDR3α contact
is made, suggesting that the former is required, although typically both are involved
(Extended Data Fig. 1). Collectively, the result suggested that sequence analysis
focused entirely on the high probability contact sites in CDR3 may provide a means
of clustering TCRs by shared specificity.

To evaluate whether specificity was principly mediated by these limited contact
sites, we assembled a panel of eight peptide-MHC tetramers, and used them to iso-
late specific T cells from 4-13 blood bank donors for each HLA specificity, plus one
tonsil sample for the class II specificity. These were immunodominant peptides from
Epstein-Barr virus (EBV), Cytomegalovirus (CMV), and influenza in the context of
HLA backgrounds HLA-A*01:01, HLA-A*02:01, HLA-B*07:02 or the class II molecule
HLA-DRB1*04:01 (Fig. 1a). Antigen-specific T cells were isolated using peptide-
MHC-tetramers, and characterized using either single cell TCR αβ sequencing or bulk
TCR β sequencing. In addition, 229 published TCR sequences of known specificity
were obtained from the literature and from crystal structures in the Protein Data
Bank(10). In total, the training set consisted of 2068 unique TCRs of known speci-
ficity (Supplementary Table 1). While most specificities were recognized by hundreds
of unique TCR sequences in each subject, a few were more monomorphic. For all
specificities, few if any TCRs were found shared across subjects, with the majority
being unique to an individual (Fig. 1b).

The specificity of some TCRs could be predicted by global similarity (Fig. 1c).
Searching just within CDR3, the CDR3 sequences selected against a single specificity
would often differ by only one amino acid, while this was not observed in set of
unselected TCRs. It was also noted that antigen-specific pools of TCRs were enriched
for more similar CDR3s on average (differing by 2-4 amino acids), although those
could not individually be asserted to be antigen specific as naïve TCR populations
also occasionally produced TCRs with that degree of similarity.
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Figure 2.1: Characteristics of TCRs reactive to common antigens across individuals.
a, MHC-tetramer sorted antigen specific TCR repertoires of common pathogen epi-
topes as well as public sources. Diversity is calculated as the Shannon entropy of
observed clones, where clone counts are the number of individuals expressing each
clone. Percentage of all clones that were found in more than one individual reported
as Public. b, Representative Venn Diagram of GLC-specific clonal overlap in three
HLA-A*02:01+/EBV+ donors. c, Minimum Hamming distance of CDR3βs in MHC-
tetramer sorted antigen-specific pools, rendered non-redundant within each subject,
compared with equal sized randomly sampled naïve control pools. s.d. of 100 repeat
random samples of control TCRs reported on bars (*P<0.01 Chi-square test). d,
CDR3s in MHC-tetramer sorted antigen-specific pools are enriched for a subset of
motifs. Replicates A and B consisting of TCRs from different sets of donors (Supple-
mentary Table 7), reproduce the same motifs with correlated enrichment assessed by
Pearson correlation coefficient.
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To further distinguish TCRs recognizing the same antigen from unrelated TCRs,
we searched for enrichment of amino acid motifs of length 2, 3, and 4 in the high
contact probability region of CDR3 spanning IMGT positions 107-116. As the reper-
toire is created through a complex V(D)J recombination process that is not known to
model neatly to simple functions, we instead developed a non-parametric resampling
method for detecting significant enrichment of local motifs in antigen-specific CDR3s.
In this method, the similarity of receptors amongst antigen-specific repertoires were
compared to repeat random subsampling from CDR3-length distribution matched
unselected repertoires of 266,346 unique naïve unselected CD4 and CD8 TCRs from
thirteen healthy individuals to establish a “fold enrichment” and “probability of en-
richment” of any motif above its expected frequency in the naive repertoire(11,12). To
avoid false positive conclusions drawn from PCR or read error, we separated biologi-
cal replicates containing TCRs against the same specificity from different individuals
and searched for enrichment of common motifs. Using this method, we reproducibly
detected enriched motifs in CDR3s that were found within TCRs specific to a given
pMHC from multiple individuals, but not in TCRs recognizing unrelated antigens
(Fig. 1d).

When clustering TCRs by both global similarity (CDR3 differing by up to one
amino acid) or local similarity (shared enriched CDR3 amino acid motifs: >10x fold-
enrichment, Prob<0.001), we found that most of the TCR sequences selected by a
particular peptide-MHC tetramer typically fell into one or a few related TCR groups
(Fig. 2a). Furthermore, in four cases where there was a high resolution crystal
structure involving one of these dominant homology group TCRs complexed to its
peptide-MHC ligand, the significantly enriched CDR3 motifs we detected in the TCR
sequences corresponded to the contact residues with the antigenic peptide (Fig. 2a, b,
Extended Data Fig. 2a). These were typically three to four amino acids in length and
usually contiguous. Positions outside of this central contact motif tended to tolerate
more amino acid diversity. A positional weight matrix of amino acid diversity in the
sequence group gives a high score to current group members and could be used to
selectively recognize new group members (Extended Data Fig. 2b). In the case of the
flu GIL antigen bound to HLA-A*02:01, where we had αβ pairing from single cell TCR
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sequencing, we would observe convergence of both α and β sequences (Fig. 2b). In
other cases, including the DRB1*04:01 restricted flu peptide specificity, the conserved
sequence features in the TCR alpha CDR3 were more discontinuous and could only be
easily detected in the context of a solved structure, where the coordination of negative
charges on the TCR with positive charges on the peptide appears to be accomplished
in multiple ways by different TCRs (Extended Data Fig. 2a). Thus we have largely
relied on TCR β sequences for our analysis. This also has the serendipitous effect
of enabling analysis of the growing databases of those sequences in different studies,
the majority of which use technologies that only sequence TCR β. An analysis of
positional motif enrichment and positional amino acid enrichment relative to the
unselected repertoire highlighted the specific residues and their motif relationships
that the structures indicate contribute the primary contacts of antigen recognition
(Extended Data Fig. 2b). The results suggest that varying degrees of sequence
convergence in each chain of the TCR heterodimer may provide some information
regarding the relative importance of each chain for specificity.

Collectively, these results on our tetramer-sorted TCR "training" dataset formu-
lated the parameters of an algorithm—GLIPH (Grouping Lymphocyte Interactions
by Paratope Hotspots) to search for and automatically cluster TCR sequences into
distinct groups according to their likely specificity (Extended Data Fig. 3, Supple-
mentary Discussion). We then subjected GLIPH to three major validation tests:
First, we ran multiple benchmarks on our training set of the aggregate sequence data
from the eight tetramers and 2068 unique sequences. We individually unit tested the
global CDR3 and local motif components of GLIPH separately and in combination
(Extended Data Fig. 4a). We found that local motifs clustered about 10% of the
TCR database into clusters of at least 3 members, global CDR3 similarity clustered
about 12% of the TCRs into clusters, and the complete GLIPH combination placed
14% of TCRs in clusters, with a trend that more sequences would result in more
clusters recognized and a higher percentage clustered. In comparison, GLIPH did
not generate any appreciable clusters when run on naïve TCRs at a range of depths,
providing confidence in a low false positive rate. Although GLIPH clustering was
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Figure 2.2: Crystal structure representatives of TCR specificity groups reveal the
structural basis for antigen-specific paratope convergence. a, Network analysis of
tetramer+ CDR3 clusters indicates relationships between TCRs (nodes) sharing
global CDR3 similarity (black edges) or local CDR3 motifs (grey edges: motifs >10
fold enriched, 0.001>probability of enrichment by chance). Grey arrows indicate rep-
resentative specificity group, accompanied with representative CDR3 alignment and
crystal structure. Significant motif residues are highlighted in red in both CDR3
alignments and structure. In alignments: low contact probability: grey. In structures
MHC: grey; peptide: orange; TCRβ: light blue; TCRα: cyan. b, single cell paired α/β
sequencing with crystal structure representative reveals coordinated motifs in both
TCRβ and TCRα CDR3 that define paratope specificity.
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run on the aggregate TCR database, when evaluating the composition of the clus-
ters, we found almost all TCRs in an individual cluster to be of a common specificity
(Extended Data Fig. 4b). We further benchmarked GLIPH against a global CDR3
only approach, a local motif only approach, a local motif only approach that did not
include our structural information, and an independent clustering algorithm CD-HIT
(Extended Data Fig. 4c)(17). For global similarity, we found that while a clustering
by CDR3 distance 1 resulted in effective grouping of TCRs of similar specificity, a
distance of 2 resulted in predominantly mixed clusters. For local motif clustering,
we found that good clustering of TCRs of common specificity could only be obtained
when our structural masks were applied to the data. Similarily, although CD-HIT
was not effective at clustering TCRs by common specificity when provided the entire
TCR sequences, when offered only the high contact probability CDR3s, it was able
to perform effective clusters provided an appropriate clustering threshold. GLIPH
produced more clusters with higher accuracy than the other methods. Finally, as a
test of whether GLIPH could recognize new members of existing specificity groups,
we ran GLIPH on replicates containing only half of the subjects (Supplementary Ta-
ble 7), and then used those specificity groups to score TCRs in the other half of the
subjects. GLIPH was able to successfully recognize new TCRs of known specificity
groups in the circulating T cells of new donors – providing a basis for reading the TCR
repertoire (Extended Data Fig. 4d). The excess of specificity groups over the number
of peptide-MHCs shows that there are multiple distinguishable TCR sequence solu-
tions to a given ligand, with multiple unique clusters observed for all pMHC antigens
evaluated (Fig. 2a, Extended Data Fig. 4b).

Our second validation test was to evaluate the performance of GLIPH in an in-
dependent test set: TCR sequences from Mycobacterium Tuberculosis (Mtb) specific
CD4+ T cells from 22 subjects who were QuantiFERON positive, which indicates a la-
tent infection (Supplementary Table 3). Briefly, PBMCs were stimulated with a large
collection of Mtb peptides (300) or an Mtb lystate for 4 and 12 hours respectively,
and Mtb-specific CD4+ T cells were selected based on the upregulation of the CD154
activation marker or cytokin secretion (Extended Data Fig. 5b, c)(18-20). Single cells
were sorted into 96-well plates and amplified and sequenced for TCR αβ sequences, as
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Figure 2.3: TCR specificity groups and predicted HLA-restriction among Mtb-
infected subjects. CDR3 α/β amino acid sequences from five GLIPH TCR specificity
groups. Yellow colored boxes highlight the predicted common HLA class II alleles
for each specificity group (combinatorial sampling probability Prob<0.013 DRB1*15
for group II, Prob<0.007 DRB1*03 for group III, Prob<0.03 DRB3*03 for group
IV, Prob<0.02 DRB1*15/DRB5*01 for group V). Green colored boxes highlight the
TCRs that have been validated in vitro. Red outlines indicate actual HLA as deter-
mined by reporter assay.
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well as scored for a panel of 18 cytokine genes using multiplex primers as previously
described (Extended Data Fig. 6)(21). The majority of cells showed a Th1*-like
phenotype including IFNγ and IL-2 production, no IL-17 production, and T-bet and
RORC expression consistent with previous reports(22,23). The TCRs from the sam-
ples were enriched for clonally expanded sequences compared with PBMC controls
(Extended Data Fig. 7). We obtained 4464 independent TCR α and 5711 β sequences
from 22 individuals and analyzed them with the GLIPH algorithm. GLIPH clustered
14% of all TCRs into 141 clusters of which 43 contained at least three unique TCRs.
We focused on clusters that contained TCRs from at least 3 individuals: 16 distinct
TCR βspecificity groups that were shared between three or more individuals and con-
tained at least four uniquely derived TCR β clones. Among that set, there were 6
specificity groups that exhibited significant V-gene bias (p<0.05), exhibited signifi-
cant CDR3 length bias (p<0.05), and were overrepresentated in clonally expanded T
cells (Fig. 3, Supplementary Table 5).

As an initial validation of the GLIPH-predicted specificity groups in the test set,
these 22 individuals were comprehensively HLA typed by sequencing in order to de-
termine whether the GLIPH-derived TCR clusters also correlated with shared HLA
alleles (Supplementary Table 6). This is expected if these TCR specificity groups are
discrete specificities, as αβ T cells recognize both peptides and the HLA molecules
they are bound to. We observed 69 unique HLA class II alleles across the geno-
types of our 22 subjects, but observed only one or two enriched candidate HLAs
within the contributors to each GLIPH sequence group. To determine whether this
predicted HLA restriction was correct, we chose three or four TCR heterodimers
from different individuals from five different representative TCR specificity groups
(I, II, III, IV, V) that all scored well for the GLIPH parameters (Fig. 3). Using
a reporter assay(24), we found that, as predicted, Group I responded to the class
II allele DQA1*01:02/DQB1*06:02, Group II responded to DRB1*15:03, Group III
responded to DRB1*03:01, Group IV responded to DRB3*03:01, and Group V re-
sponded to DRB5*01:01 (Fig. 4a-c, Extended Data Fig. 8). This provided initial
validation that GLIPH was successfully grouping TCRs of common specificity, and
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Figure 2.4: Identification of common antigen recognition by TCR specificity groups.
a, Group I TCRs were tested against candidate HLA alleles using CFP10/ESAT-6
pool (C/E Pool). Group II (b) and Group III (c) TCRs were tested using Megapool.
Negative control: PBS, positive control: CD3/CD28 stimulation. Mean ± s.d. (n=3)
shown. *P <0.05 and **P<0.005 two-tailed Student’s t-tests. d, Individual peptides
from C/E Pool tested against TCR001. Top 15th percentile of NetMHC-predicted
DQA1*01:02 binding indicated by grey bars. Insert table shows identified peptide
antigen. e, Restricted HLA types and responding peptides for Group II and III TCRs.
f-h, Dose-dependent response of Group I, II and III TCRs to their corresponding
epitopes. Mean ± s.d. (n=3) shown.
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also enabled rapid identification of an appropriate HLA-matched APC for antigen
discovery, without having to test for all 69 HLAs.

To determine the Mtb peptide specificity, we used the IEDB HLA-II binding pre-
diction algorithms to rank likely antigen candidates known to be in the Megapool(25),
and then performed individual peptide stimulation assays on the HLA-matched APC
cell line to quickly find the target peptide for all TCR specificity groups (I, II, III,
IV, V) (Fig. 4d, e, Extended Data Fig. 8). In each case, all or most TCRs in a given
group recognized the same Mtb peptide (Fig. 4f-h). We performed a sensitive Glycine
mutagenesis scan of TCR025, which confirmed that GLIPH’s predicted contact motif
was at the center of specificity determination, with even conservative single amino
acid changes (A->G and L->G) in the motif being sufficient to abolish specificity
(Fig. 5a). This provided a definitive validation of GLIPH’s ability to group TCRs of
common specificity in a CD4 setting, while also providing a reproducible method for
rapid TCR specificity analysis and antigen discovery in T cell responses generally.

As our final validation test of GLIPH’s ability to identify specificity regions of a
TCR, and predict the specificity of new TCRs using this information, we chose to
generate de novo TCRs against Mtb’s DRB1*15:03 restricted Rv119515-29. From
subject-derived TCR CDR3 sequences identified by GLIPH as being convergent
against this antigen (Fig. 5b), we calculated a CDR3 PWM matrix (Fig. 5c), in
order to de novo design TCR β sequences (paired with the TCR α from known binder
TCR025) as having the same specificity. From the GLIPH TCR PWM, we emit-
ted the top 1000 predicted CDR3b TCRs specific to Mtb’s DRB1*15:03 restricted
Rv119515-29. Some of the emitted CDR3s were identical to those of observed binders
in the CDR3, although when in the context of TCR025 Vβ, Jβ, Vα, Jα and CDR3α,
differed by at least 45 amino acids in the total TCR (Extended Data Fig. 9). We
found that many predicted binders, none of which was found in our study, had better
scores than the naturally derived TCRs obtained from subjects (Fig. 5d). From the
GLIPH prediction set, selected 10 of the best scoring predicted TCRs that were at
least two amino acids different from TCR025, and. 8 out of 10 TCRs demonstrated
antigen-specific activation to Rv119515-29, with two such TCRs being significantly
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Figure 2.5: Mutagenesis validation and de novo TCR design. a, Glycine scan of
CDR3β of TCR025 (Group II). Each mutant was stimulated by DRB1*15:03 restricted
Rv119515-29, as well as a CD3/CD28 positive control. Mean ± s.d. (n=3) shown. b,
Group II CDR3β sequences with common CDR3 length. c, Positional Weight Matrix
(PWM) reports observed CDR3β positional amino acid frequencies from (b). d, Top
1000 theoretical TCRs and scores from PWM (Formula 5). Top 10 predicted TCRs
(De18-De09) shown in red. Natural TCRs obtained from donors shown in yellow. e,
De18-De09 were stimulated by DRB1*15:03 restricted Rv119515-29. Blue indicates
modified amino acids and red dash line indicates the basal activity. Mean ± s.d.
(n=3) shown. Activity compared to TCR025, *P < 0.01 two-tailed Student’s t-tests.
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more active than TCR025 (Fig. 5e). This shows that GLIPH is able to predict new
members of a specific group and even to improve sensitivity.

2.2.3 Discussion

Relying on tetramer-sorted TCR "training" dataset, we successfully developed a novel
algorithm to search for and automatically cluster TCR sequences into distinct groups
according to their likely specificity. This algorithm, “Grouping Lymphocyte Interac-
tions by Paratope Hotspots” or GLIPH, combines global TCR sequence similarity,
local CDR sequence similarity (motifs), spatial peptide-antigen contact propensity,
V-segment bias, CDR3 length bias, shared HLA alleles among TCR contributors, and
clonal expansion bias, together with other observations concerning TCR specificity
from the literature, to identify and cluster TCR sequences in specificity groups –
sets of TCRs that are likely to be recognizing the same or very similar peptide-MHC
ligands (Extended Data Fig. 3, https://github.com/immunoengineer/gliph). The al-
gorithm first searches in parallel for global and local similarity signatures. For local
similarity signatures, it tests for enrichment of any 2, 3, and 4 amino acid continuous
motifs within CDR3 β sequences while excluding conserved N-terminal V region or
C-terminal J region CDR3 amino acid positions (IMGT 104, 105, 106, 117, and 118)
that have never been observed to bind the antigenic peptide in crystal structures
(Extended Data Fig. 1). Optionally it can also search for discontinuous amino acid
motifs in CDR3 that allow any amino acid at a position, with specific 2, 3, or 4 amino
acids around that position. A motif is considered enriched if it is elevated at least
10-fold over expected frequency in the naïve TCR reference pool, with a probabil-
ity<0.001 being at that level of enrichment by chance. In parallel, it also identifies
global similarity sequences with CDR3 β sequences that are identical or only differ by
one amino acid and are of the same length. Next, it clusters these TCRs with iden-
tified similarities, gathering together variants of similar amino acid motifs or global
CDR3 similarity into a single sequence group in the process. Finally, GLIPH confirms
the significance of the formed clusters through evaluation of enrichment of indepen-
dent features, including V-gene usage, CDR3 length distribution, clonal expansion
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bias and donor HLA usage in each sequence group. This three-step process of motif
nucleation creates a powerful statistical framework for identifying TCRs that recog-
nize the same antigen. Optionally, GLIPH can restrict cluster members to only those
TCRs that share the same V-gene. When HLA genotypes for the donors are avail-
able, GLIPH also provides a predicted HLA-restriction for each TCR sequence group
generated. This HLA allele prediction can then in turn be used to score databases of
candidate peptides, ranking them according to their odds of being the target antigen.
While previous studies have noted that certain TCR positions are more likely to be
in contact with antigen, or that distributions of short TCR CDR3β motifs systemat-
ically alter after immunization5,28, no other TCR repertoire analysis tools that we
are aware of are able to formalize these observations into a unified framework for
automated TCR sequence group identification, with statistical validation and HLA
prediction(29-31).

GLIPH can cluster TCR sequences based on their likely antigen specificity, predict
their likely HLA restriction and prioritize specific peptide antigen candidates. Our
data also indicates that linear, usually continuous motifs of 3-4 amino acids in CDR3β
and CDR3α, are often highly conserved in TCRs that recognize the same peptide-
MHC ligand, and that in known structures, these are the residues responsible for
contacting the antigenic peptide. This builds and expands on previous work by Chain
and colleagues indicating that 3 amino acid motifs in the TCR CDR3 regions are
often correlated with antigen specific responses28. While GLIPH requires the HLA
genotypes of the subjects in order to make an HLA prediction, in our Mtb dataset of 22
individuals there were 69 unique class II HLAs, and in each evaluated sequence group
we were able to predict the presenting HLA. Similarly while GLIPH cannot predict
a specific target peptide a-priori, knowing the HLA and a candidate population of
peptides, it is possible to prioritize the peptides by predicted binding to the candidate
HLA, greatly reducing the combinations of APCs and peptides to be tested. Where
no pool of candidate antigens is available, the HLA-prediction facilitates the use of
the pMHC yeast display libraries developed by Garcia and colleagues(27).

An important question is - how much of the TCR repertoire will GLIPH capture?
Here the limited data we have at this time is that it will be substantial, in that of the
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>2000 TCR sequences that we analyzed in Fig 3A, up to 14% could be gathered into
high-confidence discrete specificity groups with GLIPH, with rarefaction suggesting
that more groups could be identified if more data was available. Similarly (14%;
796/5711) of the TCRs fit into specificity groups in the Mtb cohort. A partial solution
to this problem will likely come from larger sample sizes, although in very diverse
populations, such as the South African cohort analyzed here, there will HLA alleles
that will be very rare and those only in very large population studies will there be
enough matches that could generate shared TCR specificities. Nonetheless, building
large TCR data bases around specific diseases, or TCR-omes, could be very valuable
in assessing the responses of individuals or cohorts, even if only a fraction of the TCR
sequences can be clustered using GLIPH.

In summary, we find that the GLIPH algorithm provides a way to organize TCR
sequences into distinct groups of shared specificity either within an individual or most
importantly, across a population of individuals. Secondly, it facilitates T cell anti-
gen discovery as shown by our analysis of Mtb specific T cells. Third, the specificity
groups GLIPH identifies allow one to read the T-cell receptor repertoire from primary
sequence data, even if the peptide-MHC ligand is not known. In fact a fourth, and
perhaps the most important use of GLIPH is to analyze αβ T cell responses indepen-
dently of knowing the epitope specificity and MHC restriction of the set of TCRs.
The number and size of such clusters provides information as to the complexity of
an immune response, or the presence of an important shared immune response across
individuals. Thus in analyzing the T cell response to a vaccine or infection in a given
cohort, quantifying how many distinct specificity groups are active in each individ-
ual, and whether that correlates with a good or bad response, would be valuable
information.

2.2.4 Methods

Antigen-specific T cells Peripheral blood mononuclear cells (PBMCs) were obtained
from 28 healthy blood donations of known HLA type at HLA-A, HLA-B, and HLA-DR
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Figure 2.6: Mathematical methods defined in the publication for estimating selection
effects and expected clone frequencies from PWMs. (1) Approximation for accelerat-
ing observed vs expected confidence interval estimates for motif frequencies (2) SD
estimate at sampling depth (3) Simpson’s score for feature enrichment in specificity
groups (4) probability conflation score for specificity groups (5) theoretical probability
of any sequence given a positional weight matrix PWM (6) Normalization of theoret-
ical probability scores to score distribution of unselected sequences against positional
weight matrix PWM.
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loci and known infection status for EBV and CMV from the Stanford Blood Cen-
ter. Cells were stained with fluorophore-conjugated peptide-MHC (pMHC) tetramers
of MHC HLA-A*01:01, HLA-A*02:01, HLA-B*07:02, or HLA-DRB1*04:01 back-
grounds. The tetramers were engineered to display peptides of either EBV, CMV,
or flu through photo-exchange of a surrogate peptide in the presence of a molar ex-
cess of a replacement peptide. For EBV HLA-A2, a commercial dextramer was also
used. Cells were sorted by fluorescent activated cell sorting (FACS) to collect either
as single-cells or bulk populations of antigen-specific cells in RT reverse-transcriptase
one-step reaction solution (Extended Data Fig. 5aSI Figure 4A). During single-cell
sorting, index sorting was applied to collect activity on a number of additional mark-
ers including CD45RA and CD62L. Sorting for tetramer specific cells was conducted
on a DB Aria II (BD Biosciences). For single-cell sorting Mtb-specific CD4+ T
cells using activation marker CD154, PBMCs were thawed in complete RPMI 1640
medium at 2 × 106 cells/ml and recovered 12 hours before stimulation. PBMCs were
stimulated with Mtb lysate (10 µg/ml) for 12 hours in the presence of 1 µg/ml puri-
fied anti-CD49d antibody and anti-CD154-PE. After stimulation, cells were harvested
and stained with surface markers for sorting. For single-cell sorting cytokine-secreting
cells, PBMCs were stimulated with either CFP10/ESAT-6 peptide pool or Megapool
(2 µg/ml for each peptide) for 4 hours in the presence of 1 µg/ml purified anti-CD49d
antibody. Cells were harvested and stained using the IL-2 or IFNγ Secretion Assay
Kit (Miltenyi Biotec). Sorting was conducted on a BD FACSJazz cell sorter (BD
Biosciences).

Mtb-infected study participants 22 Adolescent participants, aged 12 to 18 years,
were randomly selected from a previous cohort study, which enrolled in the town of
Worcester, approximately 100 km from Cape Town, South Africa, between 2005 and
200726. This study was approved by the Faculty of Health Sciences Human Research
Ethics Committee of the University of Cape Town and Human Research Protection
Program (HRPP) at Stanford University. Written informed consent was obtained
from the parents of adolescents and assent was obtained from adolescents. Venous
blood was collected for PBMC isolation, QuantiFERON® TB Gold In-tube (Qiagen)
(QFT) and a tuberculin skin test (TST) was administered. All samples used in this
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study were from asymptomatic QFT-positive adolescents. PBMCs were obtained by
density gradient centrifugation using Ficoll and cryopreserved using freezing medium
containing 90% fetal bovine serum and 10% DMSO. The 22 participants were HLA
typed at Sirona Genomics (now Immucor inc.), under supervision of Dr. Michael
Mindrinos.

Cell lines and reagents The Jurkat 76 T-cell line, deficient for both TCR-α and
TCR-β chains, was kindly provided by Dr. Shao-An Xue (Department of Immunol-
ogy, University College London). NFAT reporter stable cell line (J76-NFATRE-luc)
was constructed using lentiviral transfer of pNL[NlucP/NFAT-RE/Hygro] (Promega)
into Jurkat 76 cell. K562 cell line was obtained from the ATCC and cultured un-
der standard conditions. Artificial antigen presenting cells were constructed using
lentiviral transfer of different HLA alleles (gBlock ordered from IDT) into K562 cells.
Anti-CD4-APC, anti-CD69-APC/Cy7, and anti-TCR α/β-FITC abs were purchased
from BioLegend. Anti-CD3-PB, purified anti-CD49d and anti-CD154-PE abs were
purchased from BD Biosciences.

Antigens Mtb CFP10/ESAT-6 peptide pool: 22 peptides spanning the length of
the CFP10 molecule and 21 peptides spanning the length of the ESAT-6 molecule
were purchased from PEPscreen (Sigma). Each peptide was 15 amino acids long and
overlapped its adjacent peptide by 11 residues. Peptide was dissolved in DMSO at
100 µg/ml and then mixed together to make CFP10/ESAT-6 peptide pool. Megapool
peptides, containing 300 epitopes from 90 Mtb proteins were kindly provided by Dr.
Alessandro Sette (La Jolla Institute for Allergy & Immunology). Mtb whole cell
lysate (strain H37Rv) was kindly provided by Bei Resources.

Sequencing of single cell TCRs Single cells were sorted into 96-well plates contain-
ing 12μl of oneSTEP RT reaction buffer. The cells were then amplified for TCR β
and TCR α sequence, using multiplex primers, a DNA-nesting and multiplex process
by our methods previously described21,27. During the PCR priming, DNA multiplex
barcodes were attached to each amplicon such that 96-well plates of single cells were
processed on a single MiSeq 2x300bp sequencing run.

Bulk sequencing of TCRs Bulk collections of tetramer specific T-cell populations
were collected into RLT lysis buffer (Qiagen). RNA was extracted from the pool
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and subjected to amplification and DNA multiplex barcoding through the use of
previously described multiplex primer sets and a previously described plate-based
multiplex priming reaction. Using this method, up to 2 96-well plates of samples
could be sequenced in parallel on a single MiSeq 2x300bp sequencing run to generate
nearly 21 million reads.

Computational analysis of single cell and bulk TCR sequences Fastq reads were
paired-end assembled and converted to fasta. The fasta sequence files were demulti-
plexed to assign every read to a plate and well. All reads were separated into subsets
of 10k reads or less per file. Each file was submitted for parallel analysis using the
previously described VDJFasta algorithm21,27-29. For single-cell samples, the total
population of reads is analyzed within each given well, identifying a single cell only if
empirically determined boundary cutoffs of dominance for a single TCRβ and TCRα
clone are encountered, as previously reported12. The resulting full sequence for the
TCRα chain(s) and TCRβ chain are then combined with any index FACS phenotypic
markers specific to these single cells.

Computational error correction of bulk TCR sequences by replicates PCR er-
ror, PCR contamination, read error and sample swaps can all contribute to error
when performing bulk sequencing. To mitigate errors in bulk sequencing, RNA from
each sample was split and processed as duplicate technical replicates. Comparison of
clone frequencies across replicates established confidence intervals in apparent clone
frequencies, allowed calculation of R2 reproducibility of clone frequencies across repli-
cates, and enabled elimination of PCR and sequencing read errors resulting in a clone
appearing only in one replicate. Any clones not encountered across replicates were
rejected, assumed to be either read errors or too low in abundance for reliable recov-
ery across replicates. As each replicate was sequenced to an average depth of 10,000
reads, this procedure resulted in the reliable recovery of all clones with frequencies
5e-4. Within a sample, TCR reads differing from another more frequent clone by only
one nucleotide were assumed to be read errors of the more abundant species and were
collapsed into that higher frequency read.

Structural analysis of TCR positional antigen contact probability All amino acid
sequences for all solved PDB structures were downloaded and scored against the
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TCR profile HMM with an e-value cutoff of < 1-e5, and blasted against a reference
database of MHC sequences with an e-value cutoff of < 1-e10. Sequences from struc-
tures containing both an MHC and TCR were aligned. Every residue in every TCR of
such sequences was annotated as potential-contact if within 5 Angstroms of peptide
in the peptide-MHC complex as determined by Modeller 9.17 and confirmed manu-
ally using UCSF Chimera. Using this data, an average positional contact probability
was generated for each homologous position in the TCR sequence alignment. The
positional contact probabilities were used as a weighting scheme to influence impor-
tance of convergence motifs at homologous positions by GLIPH. It was observed that
CDR3b contacts were limited to IMGT positions 107-116 irrespective of whether the
four solved structures containing convergence group representatives in Figure 3 were
withheld from the dataset while calculating contact probability.

Naïve reference repertoire generation For this study, the naïve control dataset
consists of 162,165 non-redundant V-J-CDR3 sequences from CD45RA+RO- naïve
T-cells from 2 individuals11, 83,910 non-redundant V-J-CDR3 sequences from CD4
naïve T-cells from 10 healthy controls, and 27,292 non-redundant V-J-CDR3 se-
quences from CD8 naïve T-cells from 10 healthy controls12, for a total of 268,955
unique naïve V-J-CDR3 sequences from 12 individuals. CDR3 length distributions
and CDR3 3mer motif composition was comparable in all reference sets (Extended
Data Fig. 10SI_Figure 7A,B).

Calculating TCR global convergence Global similarity is defined as the CDR3
hamming distance (number of CDR3 amino acid differences) between two TCRs using
the same V-beta segment and having a same-length CDR3. In order to identify a
global similarity cutoff below which two TCRs can be assumed to share a common
specificity, GLIPH performed repeat random CDR3-length stratified resampling of
an unselected naïve TCR reference set. Using a sampling depth s of TCRs equal
in size to the query set, GLIPH performs a large number (default=1000) of random
samplings of s naïve TCR sequences. For each sampling, each TCR in the set is
compared to every other sample, and the lowest global similarity is recorded. The
proportion of all TCR similarity distances is then taken as a probability of observing
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TCRs of that level of global similarity by chance in absence of selection. (For more
details, see Supplementary MethodsSI_Doc1).

Calculating TCR local convergence Within any set of T-cell receptors, a collec-
tion of all continuous 2mers, 3mers, 4mers and 5mers, can be extracted and evaluated
for their frequency within the set. Positive selection of each observed motif can be
quantified by comparison to expected motif frequency distributions obtained during
repeat resampling from an unselected repertoire (default 1000 random resamplings;
Extended Data Fig. 10SI_Figure 7). A fold-change of enrichment can be calculated
as the observed frequency of the motif over the expected frequency of the motif as
observed in repeat random samplings from the naïve distribution. A probability of
non-enrichment can be calculated as the proportion of random subsample simulations
that obtain an unselected sample where the motif is at an equal or higher frequency
than found in the observed set. Local convergence analysis is only performed within
residues with at least a 5% probability of antigen contact (positions 107-116). Amino
acid motif frequencies in the TCR sets were comperable in content and highly corre-
lated in degree, with the result being that GLIPH results are robust to the specific
naïve TCR reference set utilized (Extended Data Fig. 10bSI_Figure 7B). If each mo-
tif could only be observed in a given sequence once, then the distribution of sampling
motif frequency means u become normally distributed and this result is equivalent to
calculating the frequencies of all motifs in the reference database, and then calculat-
ing one-sided confidence intervals for expected frequencies of any given motif in the
reference database at any given sampling depth:

(1) CI(99.9% os)=¯y±t_0.0005 (s/√n)
where n is the sample set non-redundant CDR3 sample size, y is the motif mean

frequency, and s is the SD estimate at that sampling depth for the motif, as
(2) s=√((

∑
(y_1-¯y)^2 )/(n-1)) (Supplementary MethodsSI_Doc1)

Generating and Scoring GLIPH specificity groups After analyzing global conver-
gence cutoffs and local convergence motifs, GLIPH clusters all TCRs, creating an
edge between TCRs that share either global similarity below the significance cut-
off(i.e. differ by less than 2 amino acids), or share a significant motif (i.e. share
a motif “RSS” that is >10-fold enriched and <0.001 probability of occurring that
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this level of enrichment in naïve TCR pools). Clusters can be optionally filtered for
shared V-gene usage, where only edges between TCR members with the most com-
mon V-gene are kept. These resulting clusters are GLIPH specificity groups. GLIPH
specificity groups can be provided a score that combines the analysis of CDR3 motifs,
enrichment of common V-genes, enrichment of a limited CDR3 length distribution,
enrichment of clonally expanded clones, enrichment of shared HLA in donors, and
cluster size. V-gene enrichment and CDR3 length distribution enrichment analysis
is performed by calculating the Simpson diversity index for V-genes/CDR3-lengths
within clonal members of a GLIPH specificity groups, and calculating the probability
that a random selection of TCR sequences of the same size would generate an equal
or superior Simpson score as the observed score.

(3) D=(
∑

( n(n-1)))/(N(N-1))
Enrichment of clonal expansion is similarly calculated as the probability that a

random set of equal size from the same dataset would have at least this same number
of expanded members. When HLA data is available, enrichment of HLA is calculated
for each HLA allele found in at least two members in the GLIPH convergence group,
in each instance calculating the probability that this particular HLA would be as
enriched in a set of this size by random chance as is observed in the selected set. Global
similarity is scored as previously defined. Local similarity significance is calculated
as previously described. Finally, GLIPH cluster size can be scored by evaluating
the probability of a network of that size forming by random chance in an unselected
repertoire sampled at equal depth. The summary score of a any GLIPH cluster is a
combination of all individual scores, calculated as either a probability conflation

(4) P(X=C)=(
∏

_i^NP_i (X=C))/(
∏

_i^NP_i (X=C)+
∏

_i^NP_i (X!=C))
or the first principal component (Supplementary MethodsSI_Doc2, SI_Doc3,

SI_TableSupplementary Table 4). For specificity groups based on local motifs, V-gene
usage, CDR3 length and clonal expansion appear as independent variables. However,
it should be noted that for specificity groups defined by global similarity, the CDR3
length, and to some extent V-gene usage, are no longer truly independent variables.
(GLIPH available at https://github.com/immunoengineer/gliph ; For more details,
see Supplementary Methods, Supplementary codeSI_Doc1, SI_Doc2, SI_Doc3)
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Predicting Specificity and De Novo TCR specificity design with GLIPH For a
given convergence group, an N-terminal Positional Weight Matrix (PWM) can be
constructed of the CDR3 by creating a left-justified alignment of CDR3 amino acid
residues (Fig.ure 5bB) and tabulating the frequency of each amino acid at each homol-
ogous position (Fig.ure 5cC). A score of any TCR sequence to the PWM can then be
calculated as the product of the probability of each amino acid in the scored sequence
at the homologous position in the PWM, employing pseudocounts of 0.5% for any
amino acid not observed in the PWM input alignment (Fig.ure 5dD). When attempt-
ing to identify new members of an existing GLIPH specificity group, only the first 10
N-terminal amino acid positions are used during scoring: this allows recognition of
new TCRs of different lengths from the PWM, and leverages an observation that the
conserved motifs always appear to be fixed a specific length from the N-terminus and
within the first 10 amino acids (Extended Data Fig. 4dFigure 3D).

(5) s=
∏

_(i=1)^10Pr(a_i |PWM)
where PWM is the positional weight matrix of amino acid frequencies per position,

i is the amino acid position in the PWM, and a_i is the frequency of amino acid a
at position i in the PWM. The resulting score s can be normalized by comparison to
a large set of naïve TCRs as

(6) Pr_s=(
∑

_(n=1)^N(S_n |S_n≥(s-v)))/N
where s is the PWM score of a TCR under evaluation (Formula 5), N is the set of

naïve TCR database (200,000 for Extended Data Fig. 4dFigure 3D), Sn is the PWM
score of naïve TCR n of set N, and Prs is the probability of that PWM score occurring
in naïve TCRs. To account for V-gene mismatch, a V-gene mismatch penalty v is
applied during scoring (v=-2 in Extended Data Fig. 4dFigure 3D).

When attempting to de-novo synthesize new members of an existing GLIPH speci-
ficity group, a global PWM of CDR3s of the same length is used. The top 1000 highest
predicted scoring TCRs are emitted from the PWM by stochastic sampling, and TCRs
with the highest scores are preferentially tested (Fig.ure 5dD, e5E). For normaliza-
tion, the resulting score can be compared to a distribution of a large number of naïve
sequences scored against the same PWM, to produce a probability of membership.
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Lentiviral TCR transduction Plasmids for lentiviral transduction were kindly pro-
vided by Crabtree lab in Stanford University. Lentiviral transduction was done as
previously described30. Briefly, TCR α chain, P2A linker and β chain fusion gene
fragments were ordered from IDT and cloned into MCS of N103 vector (nLV Dual
Promoter EF-1a-MCS-PGK-Puro). A GFP marker was also included through T2A
linker. HEK-293T cells were plated on 10-cm dishes at 5x106 cells/plate 24 h prior
to transfection. The culture medium was changed prior to transfection. Lentiviral
supernatants were prepared by co-transfection of 293T cells, using 10 μg of transfer
vector, 7.5 μg of envelope vector (pMD2.G), 2.5 μg of packaging vector (psPAX2)
and 75 μl PEI (Sigma). The culture medium was replaced 16 hours after transfection
and viral supernatant was collected 48 h later. The viral supernatants were filtered
through a 0.45 μm SFCA syringe filter (Corning) and concentrated by centrifuge
with 100K Amicon Ultra-15 filter (Millipore). Concentrated viruses were used for
J76-NFATRE-luc cell transduction using spinoculation for 2 hours in the presence of
6 μg/ml polybrene (Sigma). Forty-eight hours after transduction, expression of the
TCR was analyzed by flow cytometry and both GFP and TCR positive cells were
sorted for epitope screen.

Epitope screen For peptide screen, 100 μl TCR transduced J76-NFATRE-luc cells
(106/ml) were co-cultured with 100 μl HLA transduced K562 cells (106/ml) in a 96-
well plate. Peptide pool or individual peptide was added to the well at 2 μg/ml. After
8 hours incubation, cells were harvested and Luciferase activity was measured using
Nano-Glo® Luciferase Assay (Promega). Fold induction of luciferase activity was
calculated referring to unstimulated samples.
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Figure 2.7: TCRs specific to common antigen show motifs within a limited region
of CDR residues with high structural contact propensity. a, Probability of IMGT
TCR CDR positions being within 5 Angstroms of peptide antigen, as tabulated from
52 published crystal structures of TCR-pMHC interactions (Supplementary Table
2), and displayed as a heatmap on representative TCR 2j8u. Positions with less
than 25% contact probability are shown in black. b, Alignment of 52 non-redundant
(<95% amino acid identity between any pair) TCR sequences from TCR-peptide-
MHC PDB structure complexes. Positions within 5 Angstroms of peptide antigen
are indicated in blue. Linear set of 3-5 amino acids in CDR3β observed in almost
every structure, which TCRβ-CDR3 IMGT positions 108-111 being in contact in 90%
of TCR structures. Minimal contacts observed by CDR1 and CDR2 of either chain.
TCRs are clustered into 5 general contact modes according to contact profiles of all
6 CDRs.
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Figure 2.8: Crystal structure representative of TCR specificity groups. a, Class II
single cell paired α/β sequencing with crystal structure representative indicating vari-
able CDR3β length and discontinuous role of CDR3α. Discontinuous negative charged
residues in structure 1J8H coordinate lysine positive charges in peptide; negative
charged residues indicated in orange in alignment when found. b, Positional amino
acid bias in flu HLA-A2 dominant motif CDR3β and CDR3α convergence group, nor-
malized by amino acid amino acid diversity in the unselected repertoire. Enrichment
of RS[S/A] motif in TCRβ compared with naïve distribution. Enrichment of SQ at
IMGT positions 112, 113 in TCRα, with enrichment of Glycine at multiple positions.
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Figure 2.9: Three-step GLIPH algorithm. First, GLIPH searches for global and local
(motif) CDR3 similarity in TCR CDR regions with high contact probability. Motif
significance and global similarity cutoffs are established by repeat random sampling
against an unbiased reference pool of TCRs. Second, all identified global and local
relationships between TCRs are used to construct clusters of TCR specificity groups.
Third, each specificity group is analyzed for enrichment of common V-genes, CDR3
lengths, clonal expansions, shared HLA alleles in recipients, motif significance, and
cluster size. Enrichment probability is obtained by calculating the probability of
obtaining at least the observed Simpson diversity index measure for that feature
compared with a random sampling of equal size from the source dataset. The resulting
features are combined into a specificity group score for each group.
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Figure 2.10: Benchmark of GLIPH subcomponents and complete algorithm on ran-
dom naïve TCRs or a mixed training set pool of pMHC tetramer+ TCRs of 8 known
specificities. a, GLIPH clusters up to 14.5% of tetramer+ TCRs while clustering
less than 0.5% of naïve TCRs, a combination of global CDR3 similarity and local
motif enrichment resulting in more clustering than either individually. b, The cluster
results of applying GLIPH to the mixed pool of tetramer-sorted TCRs. Each node
is a TCR, their specificity indicated by color. Edges between TCRs indicating a
GLIPH-predicted shared specificity; light grey indicate shared local motif, and dark
grey indicate shared global similarity. Over 95% of cluster members are grouped
with other TCRs of the same specificity. c, GLIPH components evaluated for per-
centage of TCRs clustered vs percentage of correct specificity assignments. Global
CDR3 clustering by hamming dist=1 or dist=2 reported. Global CDR3 similarity
clustering by CD-HIT, with clustering cutoffs 0.8 or 0.9 reported. Local motif simi-
larity clustering with and without structural constraints reported. Complete GLIPH,
including global CDR3 identity, local CDR3 motif similarity, structural constraints
and clustering scoring, resulted in 14.5% of TCRs clustering with 95% of cluster
members correctly grouped with other TCRs of shared specificity. For global sim-
ilarity, distance 1 resulted in effective grouping of TCRs while distance 2 resulted
in predominantly mixed clusters. For local motifs, effective TCR clustering could
only be obtained when structural contact probability masks were applied. Similarily,
although CD-HIT was not effective at clustering TCRs by common specificity when
provided the entire TCR sequences, when offered only the high contact probability
CDR3s, it was able to perform effective clusters provided an appropriate clustering
threshold. d, When run on replicate A containing TCRs from half of study subjects,
GLIPH produced specificity groups whose positional weight matrices (PWMs) could
then be used to score the TCRs from replicate B subjects (Formula 5,6). GLIPH
scoring identifies new TCRs of correct specificity from new subjects.
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Figure 2.11: Platform for PBMC stimulation and characterization of antigen-specific
TCRs. a, Gating strategy used for isolating and sorting tetramer positive T cells. b,
Frozen PBMCs from QFN+ donors are thawed, recovered and stimulated with either
Mtb lysate or peptide pool. Antigen-specific T cells are single-cell sorted into 96-
well plate for TCR amplification using established protocol (Han, et al,). c, Gating
strategy used for isolating and single-cell sorting antigen-specific T cells.
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Figure 2.12: Phenotypic analysis of clonal expanded Mtb-specific CD4+ T cells.
a, Gating strategy for isolating antigen-specific T cells. PBMC from one QFN+
donor (02/0259) was stimulated with Mtb lysate and then stained with activation
markers CD69 and CD154. Antigen-specific CD4+ T cells were sorted by gating on
CD69+CD154+ population. Alternatively, PBMC was stimulated with Megapool
peptide library. Antigen-specific CD4+ T cells were isolated using cytokine capture
assay, IL-2 or IFNγ. b, 18-parameter (parameters listed on right side) phenotypic
analysis of Mtb-specific CD4+ T cells from all the 22 donors. Individual T cells are
grouped by TCR sequence; each color on the bar above the heat maps represents a
distinct and clonal expanded TCR sequence. The majority of cells presented a Th1*-
like phenotype including IFNγ and IL-2 production, T-bet and RORC expression, as
is characteristic of previously reported Mtb responses.



CHAPTER 2. READING SPECIFICITY WITH CONVERGENCE ANALYSIS188

Figure 2.13: Clonal expansion of Mtb-specific CD4+ T cells. Clonal analysis of
Mtb-specific CD4+ T cells from all the 22 donors using different selection strategy,
including stimulation by ESAT6/CFP-10 pool (C/E Pool) or Megapool followed by
cytokine capture assay and Mtb lysate stimulation followed by CD154+ selection.
Each dot represents a distinct TCR sequence and the count represents the number of
repeat. PMA/Ionomycin stimulation was used as a non-specific stimulation control.
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Figure 2.14: Epitope screen using luciferase assay. a, Each individual peptide
from Megapool was tested against J76-NFATRE-luc cell expressing TCR025 in co-
culture with K562 expressing DRB1*15:03. Column 1-300: individual peptide from
Megapool, column 301: CD3/CD28 stimulation as positive control. Peptides pre-
dicted to be in the top 15 percentile of binding to each HLA by the MHC-II Consensus
method are indicated by grey bars. Mean ± s.d. (n=3) are shown. The insert table
shows the restricted HLA type and responding peptides. Similar screen was also done
for TCR054 (b), TCR098 (c) and TCR088 (d).
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Figure 2.15: Amino acid alignment of naturally occurring and de novo Group II
TCRs. Amino acid alignment presents first the TCRβ chain followed the TCR α
chain for naturally occurring Group II TCRs n1-10 and de novo TCRs De9-De18. All
segment identities are reported for each sequence in the sequence headers. Positional
conservation is colored as dark blue if conserved, and light blue or white if variable.
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Figure 2.16: Comparison of CDR3 Length and 3mer motif composition of naïve
TCR reference set. The naïve control dataset consists of 162,165 non-redundant
V-J-CDR3 sequences from CD45RA+RO- naïve T-cells (Warren et al, Genome Re-
search 2011), 83,910 non-redundant V-J-CDR3 sequences from CD4 naïve T-cells
from 10 healthy controls, and 27,292 non-redundant V-J-CDR3 sequences from CD8
naïve T-cells from 10 healthy controls (Rubelt et al, ref. 8), for a total of 268,955
unique naïve V-J-CDR3 sequences. Analysis of CDR3 length distributions (a) and
motif frequency distributions (b) indicates that the three naïve reference sets have
very similar CDR3 length distributions and 3mer amino acid motif frequency distri-
butions (r=0.99, r=0.95, and r=0.94 Pearson correlation coefficients for CD4xCD8,
CD4xWarren, and CD8xWarren, respectively).
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2.3 Reading specificity in the γδ T-cell receptor

repertoire

Interleukin (IL)-17 plays a key role in immunity. In acute infections, a rapid IL-17
response must be induced without prior antigen exposure, and γδ T cells are the major
initial IL-17 pro- ducers. In fact, some γδ T cells make IL-17 within hours after an
immune challenge. These cells appear to acquire the ability to respond to IL-1 and
IL-23 and to make IL-17 naturally in naïve animals. They are known as the natural T
γδ 17 (nT γδ 17) cells. The rapidity of the nT γδ 17 response, and the apparent lack
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of explicit T cell receptor (TCR) engagement for its induc- tion have led to the view
that this is a cytokine (IL-1, IL-23)-mediated response. However, pharmacological
inhibition or genetic defects in TCR signaling drastically reduce the nT γδ 17 response
and/or their presence. To better understand antigen recognition in this rapid IL-17
response, we analyzed the antigen receptor repertoire of IL-1R + /IL-23R + γδ T cells,
a proxy for nT γδ 17 cells in naïve animals directly ex vivo , using a barcode-enabled
high through- put single-cell TCR sequence analysis. We found that regardless of their
anatomical origin, these cells have a highly focused TCR repertoire. In particular, the
TCR sequences have limited V gene combinations, little or no junctional diversity and
much reduced or no N region diversity. In contrast, IL-23R − cells at mucosal sites
similar to most of the splenic γδ T cells and small intestine epithelial γδ lymphocytes
expressed diverse TCRs. This remark- able commonality and restricted repertoire of
IL-1R + /IL-23R + γδ T cells underscores the importance of antigen recognition in
their establishment/function.

2.3.1 Introduction

Interleukin (IL)-17 is an important cytokine in the inflamma- tory response. It induces
chemokines and cytokines that mediate the maturation and release of neutrophils
from the bone mar- row. Neutrophil recruitment focuses the immune response at the
site of infection to reduce pathogen load, and induces the subsequent phases of the
inflammatory response, which primes antigen-specific αβ T cell and B cell activation
and initiates the resolution program. Although both αβ T cells and γδ T cells can
make IL-17, αβ T cells producing IL-17 (Th17 cells) require antigen-specific priming
and a specific cytokine environment to develop. In acute infections, a rapid IL-17
response must be ini- tiated without prior antigen exposure, and γδ T cells have been
identified as the major initial IL-17 producers in infections and after immunization
[reviewed in Ref. (1)].

Some naïve γδ T cells in secondary lymphoid organs undergo antigen-driven acti-
vation and differentiation to become IL-17 producers: within 24 h after immunization,
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antigen-specific γδ T cells in the draining lymph node increase in numbers and show
activated phenotypes (e.g., becoming CD44 hi and CD62L lo ).

Forty-eight hours after immunization, activated γδ T cells express ROR γ t and
after another 12 h, these cells make IL-17A and IL-17F (2, 3), these are the inducible
T γδ 17 cells. Importantly, encoun- tering antigen in an immune response induces
the expression of inflammatory cytokine receptors such as IL-1R and IL-23R on γδ
T cells. Signaling through the T cell receptor (TCR) and the cytokine receptors can
then induce sustained, high magnitude IL- 17 production (2, 4). These observations
provide a mechanistic basis for the induction of a sustained antigen-specific γδ T cell
IL-17 response, which is much more rapid than that of Th17 αβ T cells.

In addition to the inducible T γδ 17 cells discussed above, some γδ T cells in naïve
mice, such as those in the skin dermis, the peri- toneum, intestinal lamina propria, the
lung, and the spleen have an activated phenotype (CD44 hi CD62L lo ) and express
IL-1R and IL- 23R. These cells make IL-17 a few hours after immune challenge- these
are the natural T γδ 17 (nT γδ 17) cells (1). The observation that IL-17 can be
induced with IL-1 and IL-23 alone without deliberate TCR triggering has led to the
supposition that the anti- gen recognition by these cells is irrelevant to their response
(5).

Nonetheless, this response is inhibited by cyclosporine A (CsA) or by FK506
(2). Both compounds reduce nuclear factor of activated T cells (NFAT) activity and
disrupt the calcineurin-NFAT signal- ing circuit activated by signaling through the
antigen receptor (6). Furthermore, the amount of IL-17 induced by the inflammatory
cytokines alone is much lower in magnitude when compared with that induced by cy-
tokines together with TCR stimulation (2, 4), suggesting that robust IL-17 production
requires combined signal- ing through the TCR and cytokine receptors. Moreover,
the num- ber of rapid IL-17 responding IL-1R + γδ T cells in the intestinal lamina
propria and peritoneum is markedly reduced in germ free mice, and in SPF mice
treated with the antibiotic neomycin sul- fate, vancomycin but not in mice treated
with metronidazole when compared with SPF mice and the numbers can be restored
by SPF microbiota reconstitution. However, the presence of these IL-1R + γδ T cells
requires signaling through VAV1, a guanine nucleotide exchange factor required for
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the activation of γδ T cells via γδ TCR ligation (7), but not the myeloid differentia-
tion primary response protein 88 (MyD88) or toll-like receptor 3 signaling pathways
(8). In addition, the number of nT γδ 17 cells is drastically reduced in the SKG
mouse (9), which carries a mutation that reduces the function of the kinase domain
of the TCR-proximal signaling kinase Zap70. These observations demonstrate the
importance of TCR signaling in nT γδ 17 induction and function. To evaluate the
contribution of antigen recognition to their function, we seek to determine the antigen
receptor repertoire of nT γδ 17 cells. To this end, we use a bar-code-enabled high
throughput single-cell TCR sequencing strategy, which allows us to identify the TCR
γ and δ gene pair from each cell directly ex vivo , without the bias introduced through
generating T cell clones or hybridomas. This method determines the entire sequence
of both the TCR γ and δ chains, including the V gene segment and CDR3 region,
such that we can properly define the antigen receptor specific repertoire, rather than
describing these cells solely based on their V γ or V δ usage. The results are discussed
below.

2.3.2 Results

A defining feature of nT γδ 17 cells is their surface expression of IL-1R and IL-23R
in naïve animals. To determine the antigen receptor repertoire of γδ T cells that
are “poised” to mount a rapid IL-17 response, we analyzed skin dermal cells, and
IL-23R + γδ T cells in the colon lamina propria, fat, and spleen of naïve IL-23R
reporter mice (IL-23R EGFP). Peritoneal nT γδ 17 cells are charac- terized by their
IL-1R expression in rapid response situations (8); therefore, we analyzed IL-1R +
peritoneal γδ T cells from C57/BL6 mice that were intra-peritoneally (i.p.) infected
with T. gondii 5 h prior. Representative FACS analysis and gates used to isolate these
cells are shown in Figure 1 . The TCR sequences were determined from a single FACS
sorted γδ T cell using a bar-code-enabled high throughput single-cell TCR sequencing
strategy. We found that IL-17F + spleen γδ T cells from naïve IL-17F reporter mice
(Il17f thy1.1/thy1.1) and IL-23R + spleen γδ T cells from naïve IL-23R reporter mice
have similar TCR repertoires ( Figure 2 ). This obser- vation is consistent with the
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supposition that IL-23R + γδ T cells in naïve animals can be used as a proxy for nT
γδ 17 cells in TCR repertoire analysis.

A striking characteristic of the TCR repertoire of IL-1R + /IL- 23R + γδ T cells
is the lack of diversity. They express TCRs with limited V gene combinations, little
or no junctional diversity and much reduced or no N region diversity. In particular,
a single pair of TCR sequences encoded by V δ 1D δ 2J δ 1 and V γ 6J γ 1 (Group
1 sequences, Figure 2 ) dominates the repertoire of dermal cells, IL-23R + γδ T cells
from the lung, colon, and IL-1R + γδ T cells from the peritoneum. These cells also
utilize two sets of closely related TCR sequences, which consist of similar V γ 4J γ 1
rearrange- ments, paired with very similar V δ 5D δ 2J δ 2 (designated as Group 2,
3 sequences, Figure 2 ). Naïve spleen IL-23R + and IL-17F + T cells did not have
a dominant population that expressed Group 1 sequences. Instead, cells with the
Group 3 sequences were more represented. Some of these γδ T cells also expressed
TCRs consist- ing of Group 3 TCR γ chains paired with a very similar V δ 4D δ
2J δ 2 TCR δ chains (designated as the Group 4 sequences, Figure 2 ). In contrast,
reported TCR sequences identified from spleen γδ T cells and small intestine epithelial
γδ lymphocytes (IELs) (14–16) and IL-23R − γδ T cell populations in the spleen,
lung, and colon lamina propria analyzed here (Table S1 in Supplementary Mate- rial)
are highly diverse, using different V γ ’s and V δ ’s, with CDR3 regions consisting
of both D δ 1 and D δ 2 gene segments in all three reading frames, and N regions
in each of the gene-segment junc- tions. An analysis of CDR3 paratope convergence
within IL-23R − , IL-23R + , and lL-17F + γδ T cell populations is shown in Figure
3 . Along this line, it should be noted that the antigen-specific γδ T cells, including
the inducible T γδ 17 cells, also utilize diverse TCRs (2, 3, 16). In this context, ~1/3
of the IL-23R + or IL-17F + spleen γδ T cells, and ~1/5 of IL-23R + lung γδ T cells
express TCRs with different V γ V δ genes and diverse CDR3 regions. The spleen and
lungs are continuously exposed to blood-borne or air-borne environmental antigens.
It is likely that the TCR repertoire of IL- 1R + /IL-23R + γδ T cells reflects both
the natural and the inducible T γδ 17 cells.
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Figure 2.17: Representative FACS analysis and gates used to isolate(A) IL-23R+ (in
blue) and IL-23R− γδ T cells (in green)(using FACSDiva) from IL-23R reporter mice.
(B) Dermal cells, IL-1R+ γδ T cells from the peritoneum of C57BL/6 mice infected
with T. gondii 5 h prior. (C) Thy1.1+ cells from the spleen of naïve IL-17F reporter
mice. (B,C) are plotted using FlowJo. The number within each graph indicates the
percentage of the designated population of cells out of the total γδ T cells.
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Figure 2.18: Frequency of each major group of TCR sequences in
IL-1R+/IL23R+ γδTcellpopulations.SpleenIL-17+,IL-23R+,IL-23R− γδT
cells,lung,fat,andcolonlaminapropriaIL-23R+ andIL-23R− γδTcells, peritoneumIL-
1R+ γδTcells5hafterintraperitoneumToxoplasmagondii infection and skin dermal
γδ T cells were analyzed. Each cell population is represented by one pie chart.
Each section of the pie chart represents one group of TCR sequences, color-
coded as described. n, total number of analyzed sequences. The number within
each section of the pie chart indicates the percentage of a given group of TCR
sequences in the total number of analyzed sequences of that cell population (Ta-
ble S1 in SupplementaryMaterial).Allexperimentswereperformedtwoindependent
times,excepttheanalysisofspleenIL-23R+ andIL-23R− γδTcells,which wereisolatedan-
danalyzedonce.TCRsequencesfromtwoindependent isolations and analyses are very
similar and the combined results are shown. In two independent experiments, 58%
and 82% of the total colon γδ T cells are IL23R+ ; 74% and 86% of total fat γδ T
cells are IL-23R+ ; 0.1% and 0.2% of spleen cells are IL-17F+ ; 2.9% of spleen γδ T
cells are IL23R+ . In the peritoneum 5 h after infection, 12 and 30% of the γδ T
cells are IL-1R+.
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Figure 2.19: Analysis of CDR3 paratope convergence of all unique sequencesofIL-
23R− γδTcellsfromthespleen,fat,colonsamples, IL-17F+ γδTcellsfromspleenandIL-
23R+ γδTcells(combinedfromall anatomical sites). Percent identity among aligned γ
and δ CDR3 amino acid sequences for all pairwise comparisons within each group are
represented in violin/Box plot. Significance assessed by the Mann–Whitney–Wilcoxon
test with Bonferroni’s correction for multiple testing given a = 0.01 set to p < 0.001
to be considered significance. Dotted line indicates average 99th percentile percent
identity for the IL-23R− T cell populations (68% ID for spleen, 73% ID for fat, 70%
ID for colon).

Despite the fact that a substantial number of IL-1R + /IL-23R + γδ T cells and
dermal γδ T cells express TCRs with similar V γ 4J γ 1 rearrangement (CSYG-(X)Y-
SSGFHK), V γ 4 + TCR γ chain sequences are not utilized exclusively by this set
of T cells. In fact, ~50% of the IL-23R − cells also expressed TCRs with V γ 4,
and more than half of these V γ 4 sequences were also expressed in IL-23R + cell
populations ( Figure 4 ).

2.3.3 Discussion

Our analysis showed that regardless of their anatomical location, IL-1R + /IL-23R
+ γδ T cells express a highly focused antigen recep- tor repertoire. While all major
groups of TCR sequences expressed by these cells result from rearrangements with
exonuclease diges- tion and P nucleotide addition (17), only Group 3 and 4 TCR
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sequences have N nucleotides at the CDR3 γ and δ junctions. The N nucleotides
are generated at the terminal of the combining gene segments by terminal transferase
(TdT) in a template-independent manner. In mice, TdT is not expressed in developing
thymocytes until 4–5 days after birth (18). Thus, γδ T cells that express Group 1 and
2 sequences are most likely generated during the fetal and/or neonatal stages. Indeed,
Group 1 TCR has also been described for hybridomas derived from fetal and newborn
γδ thymocytes (19) and is also present at the mucosal sites (20–22). Our observation
that Group 3, 4 TCR expressing IL-1R + /IL-23R + γδ T cells are prevalent in the
spleen and present in the lung and skin is con- sistent with the observation that adult
precursor cells contribute to the nT γδ 17 cell pool and that these cells express V γ
4 + TCR γ chains (23–25).

Group 1 TCR sequences have been described for γδ T cell hybridomas generated
from lung epithelium (26), from expanded γδ T cells after Listeria monocytogenes
and Bacillus subtilis infection and in models of autoimmune inflammation (27–29).
In addi- tion, the rapid appearance of V γ 6 and/or V δ 1 T γδ 17 cells has been
reported in various infection systems: E. coli (i.p.) (30, 31), L. monocytogenes (i.p.
oral) (32, 33) and Staphylococcus aureus (i.p.) (34). V γ 6 + and V γ 4 + dermal
γδ T cells making IL-17 in response to imiquimod applied topically to induce skin
inflammation has also been reported (24, 25). Separated TCR γ and δ chains of Group
4 sequences were identified from CFA-induced IL-17 making γδ T cells (35, 36). Taken
together, our repertoire analysis confirms and advances previous studies of TCR usage
of nT γδ 17 cells by defining the precise TCR sequences of these cells and observing
how constrained they are. These observations suggest that antigen encountering
is important for establishing their functional attrib- utes, a finding consistent with
observations that signaling through the TCR is essential for this process (2, 8, 9).

It is unclear what nT γδ 17 cells recognize. However, the iden- tification of
their TCR sequences is an important step forward in characterizing the antigens
of these cells. In this context, O’Brien, Born and their colleagues demonstrated that
a multimeric stain- ing reagent of soluble TCR expressing the Group 1 sequences can
bind L cells, NIH 3T3 cells, a keratinocyte cell line XB-2, as well as freshly isolated
macrophages from naïve mice and from mice infected with Listeria (37, 38).
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Figure 2.20: FrequencyofVγchainusageinIL-23R− cellpopulation.Each pie chart rep-
resents each cell population. n, total number of analyzed sequences. Number with
each section of the pie chart, the percentage of each group of sequences color-coded
as indicated in Figure 2.

While nT γδ 17 responses are well documented in the mouse, it is unclear whether
or not a human counterpart exists. In this regard, human and murine γδ TCR gene
sequences are very dif- ferent. Thus, it is unlikely that one would find human γδ TCRs
that show the sequence equivalent of the TCRs described for the murine nT γδ 17
cells. However, one of the defining characteris- tics of adaptive immune recognition is
that the antigen specificity, but not the particular antigen-specific receptor sequences,
is con- served through evolution. The recognition of lysozyme by specific murine,
human, and camel antibodies as well as by the adap- tive immune receptors of sea
lamprey (39), and the recognition of the algae protein phycoerythrin (PE) by specific
human and murine γδ TCRs (2) are such examples. Thus, differences in the TCR
gene sequences among different species should not preclude the presence of nT γδ 17
cells.

It should be noted that the focused antigen receptor reper- toire described here is
based on the analysis of pairs of TCR γ and δ chains, consisting of V gene segments
as well as CDR3 regions. While the majority of these γδ T cells expressed V γ 6 or
V γ 4, not all V γ 6 and V γ 4 expressing cells belong to this group of nT γδ 17 cells.
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These observations underscore the need for cau- tion in categorizing γδ T cell function
solely according to V gene usage. The approach of determining TCR sequences from
a sin- gle cell directly ex vivo , as outlined here, should facilitate future analysis of
the contributions of γδ T cells to a range of immune responses.

2.3.4 Methods

MICE
C57BL/6 mice were purchased from Jackson Laboratories and housed in the Stan-

ford Animal Facility for at least 1 week before use. IL-17F Thy1.1/Thy1.1 mice (10)
were bred and housed in the pathogen-free Stanford Animal Facility. IL-23R EGFP
mice (11) were bred and housed in the pathogen-free Merck Research Labo- rato-
ries, Palo Alto Animal Facility. All experiments were performed in accordance with
the Institutional Biosafety Committee and the Institutional Animal Care and Use
Committee.

ANTIBODIES AND CELL ISOLATION
Antibodies were purchased from either eBioscience or BD Bio- sciences unless

otherwise stated. All analyses and sorting were performed on a BD Aria or Falstaff
sorter. γδ T cells were enriched from mouse splenocytes or peritoneal cells by negative
depletion as described (2).

To isolate Thy1.1 positive spleen γδ T cells from IL- 17F Thy1.1/Thy1.1 reporter
mice, enriched γδ T cells were stained with PE-GL3, Pacific Blue-CD3e, PerCPCy5.5-
Thy1.1, PerCP/Cy5.5 Mouse IgG1, κ Isotype Ctrl (OX-7 and its isotype control;
BioLegend), LIVE/DEAD Aqua, APC-Cy7 conjugated anti-TCR β , CD19, CD11b,
CD11c, F4/80, TER-119. APC-Cy7 and Aqua pos- itive cells are excluded from
analysis. Peritoneal IL-1R positive γδ T cells were isolated from C57BL/6J mice
i.p. infected with 1000 tachyzoites of Type II Me49 strain of Toxoplasma gondii 5 h
prior. To isolate IL-1R (CD121a) positive cells, enriched γδ T cells were stained with
PE-GL3 (pan anti- γδ TCR), PE-Cy7-CD3e (145- 2C11), APC-CD121a (JAMA-147;
BioLegend), LIVE/DEAD Aqua, and APC-Cy7 conjugated anti-TCR β H57-597),
CD19 (1D3), CD11b (M1/70), CD11c (N418), F4/80 (BM8), TER-119 (TER- 119).
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APC-Cy7 and Aqua positive cells are excluded from analysis. Dermal split-thickness
skin was obtained from C57BL/6J mice ears. Dermal sheets were prepared by in-
cubation of split-thickness skin with 0.25% trypsin for 16 h at 4°C, and subsequent
removal of the epidermis. Dermal sheets were digested with 2.5 mg/ml colla- genase
and 0.3 mg/ml hyaluronidase for 45 min at 37°C to release dermal cells. Dermal cells
were stained with PE-GL3, APC-Cy7- CD3e antibodies and Live/Dead Aqua. GL3
and CD3e positive dermis γδ T cells were isolated with FACS.

Two- to four-month-old female IL-23R EGFP +/ − mice were used for the iso-
lation of IL-23R + and IL23R − γδ T cells. Five mice were combined for each
type of tissue preparation. Visceral fat was directly minced in 4 mg/ml collagenase
II (Worthington), 5% FBS in RPMI followed by shaking for 45 min at 37°C. Cells
were further purified with 36% Percoll gradient (GE Healthcare) in PBS and spun at
2000 rpm for 5 min at room temperature. The floating layer and Percoll layer were
aspirated and the resulting cell pellet was suspended in PBS, counted, and stained
for flow cytometry. Colons were cleaned and washed in PBS and minced into 1 cm
segments and placed into 0.5 mM EDTA in PBS. After shaking for 20 min at 37°C,
the intraepithelial cell rich supernatant was discarded. Colon fragments were washed
with PBS, then further minced to pieces <0.25 cm 3 in size in digestion buffer [PBS
+ 10% FCS + 1 mg/ml collagenase D (Sigma) + 2000 U/ml DNase I (Sigma) +
Dispase (Corning, dilute 1:100)], and incubated with shaking for 20 min at 37°C.
Cells were further purified with percoll gradient as described for isolating cells from
fat. Isolated cells were stained with FcBlock, CD3 Percp-Cy5.5, TCR δ APC (Clone
GL3), TCR β APC-Cy7, CD4- PE, CD8 α PE-Cy7, Live/Dead Aqua. IL-23R GFP
+ and IL-23R GFP − γδ T cells were single sorted into the wells of a 96-well plate
using a FACsAria II (BD Biosciences).

BARCODE-ENABLED HIGH THROUGHPUT SINGLE-CELL TCR DETER-
MINATION

Single T cells are sorted into 96-well PCR plates and sequencing is performed
as described (12), except murine γδ TCR specific primers are used for this study.
γδ TCR primer sequences and the sequencing reaction are described in detail in
Supplemental Methods in Supplementary Material. Briefly, an RT-PCR reac- tion
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is carried out with TCR primers. The products are then used in a second PCR
reaction, with nested primers for TCR genes. A third reaction is then performed
that incorporates individual barcodes into each well. The products are combined,
purified, and sequenced using the Illumina MiSeq platform. The result- ing paired-end
sequencing reads are assembled and de-convoluted using barcode identifiers at both
ends of each sequence by a cus- tom software pipeline to separate reads from every
well in every plate. The resulting sequences are analyzed using VDJFasta (13), which
we have adapted to resolve barcodes and analyze sequences with a customized gene-
segment database. The CDR3 nucleotide sequences are then extracted and translated.
Barcode design is shown in Figure S1 in Supplementary Material and TCR sequenc-
ing primer sequences are shown in Table S2 in Supplementary Material.

2.3.5 Acknowledgements

This work was made possible and largely my the co-authors, including primary author
Yu-Ling Wei, as well as Arnold Han, Fengqin Fang, Luis Alejandro Zuniga, Jacob S.
Lee, Daniel J. Cua and Yueh-hsiu Chien. Additional, we thank the National Institutes
of Health for grant support (YC).

2.3.6 References

1. Chien YH, Meyer C, Bonneville M. γδ T cells: first line of defense and beyond.
Annu Rev Immunol (2014) 32 :121–55. doi:10.1146/annurev-immunol-032713- 120216

2. Zeng X, Wei YL, Huang J, Newell EW, Yu H, Kidd BA, et al. γδ T cells recog-
nize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-
17 response. Immunity (2012) 37 (3):524–34. doi:10.1016/j.immuni.2012.06.011

3. Zeng X, Meyer C, Huang J, Newell EW, Kidd BA, Wei YL, et al. Gamma
delta T cells recognize haptens and mount a hapten-specific response. eLIFE (2014)
3 :e03609. doi:10.7554/eLife.03609

4. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH.
Interleukin- 1 and IL-23 induce innate IL-17 production from gammadelta T cells,



CHAPTER 2. READING SPECIFICITY WITH CONVERGENCE ANALYSIS207

ampli- fying Th17 responses and autoimmunity. Immunity (2009) 31 (2):331–41.
doi:10.1016/j.immuni.2009.08.001

5. Kapsenberg ML. Gammadelta T cell receptors without a job. Immunity (2009)
31 (2):181–3. doi:10.1016/j.immuni.2009.08.004

6. Flanagan WM, Corthésy B, Bram RJ, Crabtree GR. Nuclear association of a
T- cell transcription factor blocked by FK-506 and cyclosporin A. Nature (1991) 352
(6338):803–7. doi:10.1038/352803a0

7. Swat W, Xavier R, Mizoguchi A, Mizoguchi E, Fredericks J, Fujikawa K, et al.
Essential role for Vav1 in activation, but not development of gammadelta T cells. Int
Immunol (2003) 15 (2):215–21. doi:10.1093/intimm/dxg021

8. Duan J, Chung H, Troy E, Kasper DL. Microbial colonization drives expansion
of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host
Microbe (2010) 7 (2):140–50. doi:10.1016/j.chom.2010.01.005

9. Wencker M, Turchinovich G, Di Marco Barros R, Deban L, Jandke A, Cope A,
et al. Innate-like T cells straddle innate and adaptive immunity by altering antigen-
receptor responsiveness. Nat Immunol (2014) 15 (1):80–7. doi:10.1038/ ni.2773

10. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, et al. Late
devel- opmental plasticity in the T helper 17 lineage. Immunity (2009) 30 (1):92–107.
doi:10.1016/j.immuni.2008.11.005

11. Awasthi A, Riol-Blanco L, Jäger A, Korn T, Pot C, Galileos G, et al. IL-23
receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J
Immunol (2009) 182 (10):5904–8. doi:10.4049/jimmunol.0900732

12. Han A, Glanville J, Hansmann L, Davis MM. Linking T-cell receptor sequence
to functional phenotype at the single-cell level. Nat Biotechnol (2014) 32 :684–92.
doi:10.1038/nbt.2938

13. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, et al. Pre-
cise determination of the diversity of a combinatorial antibody library gives insight
into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A (2009) 106
(48):20216–21. doi:10.1073/pnas.0909775106



CHAPTER 2. READING SPECIFICITY WITH CONVERGENCE ANALYSIS208

14. Elliott JF, Rock EP, Patten PA, Davis MM, Chien YH. The adult T-cell
receptor delta-chain is diverse and distinct from that of fetal thymocytes. Nature
(1988) 331 (6157):627–31. doi:10.1038/331627a0

15. Lacy MJ, McNeil LK, Roth ME, Kranz DM. T-cell receptor delta-chain diver-
sity in peripheral lymphocytes. Proc Natl Acad Sci U S A (1989) 86 (3):1023–6.
doi:10.1073/pnas.86.3.1023

16. Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, et al.
Anti- gen recognition determinants of gammadelta T cell receptors. Science (2005)
308 (5719):252–5. doi:10.1126/science.1106480

17. Lafaille JJ, DeCloux A, Bonneville M, Takagaki Y, Tonegawa S. Junctional
sequences of T cell receptor gamma delta genes: implications for gamma delta T cell
lineages and for a novel intermediate of V-(D)-J joining. Cell (1989) 59 (5):859–70.
doi:10.1016/0092-8674(89)90609-0

18. Bogue M, Gilfillan S, Benoist C, Mathis D. Regulation of N-region diversity
in antigen receptors through thymocyte differentiation and thymus ontogeny. Proc
Natl Acad Sci U S A (1992) 89 (22):11011–5. doi:10.1073/pnas.89.22.11011

19. Heilig JS, Tonegawa S. Diversity of murine gamma genes and expression
in fetal and adult T lymphocytes. Nature (1986) 322 (6082):836–40. doi:10.1038/
322836a0 20. Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W, et
al. Hom- ing of a gamma delta thymocyte subset with homogeneous T-cell receptors
to mucosal epithelia. Nature (1990) 343 (6260):754–7. doi:10.1038/343754a0

21. Nandi D, Allison JP. Phenotypic analysis and γδ T cell receptor repertoire of
murine T cells associated with vaginal epithelium. J Irnrnunol (1991) 147 :1773.

22. Heyborne KD, Cranfill RL, Carding SR, Born WK, O’Brien RL. Character-
ization of gamma delta T lymphocytes at the maternal-fetal interface. J Immunol
(1992) 149 (9):2872–8.

23. Narayan K, Sylvia KE, Malhotra N, Yin CC, Martens G, Vallerskog T, et al.
Immunological genome project consortium. Intrathymic programming of effector fates
in three molecularly distinct γδ T cell subtypes. Nat Immunol (2012) 13 (5):511–8.
doi:10.1038/ni.2247



CHAPTER 2. READING SPECIFICITY WITH CONVERGENCE ANALYSIS209

24. Gray EE, Ramírez-Valle F, Xu Y, Wu S, Wu Z, Karjalainen KE, et al. De-
ficiency in IL-17-committed V γ 4(+) γδ T cells in a spontaneous Sox13-mutant
CD45.1(+) congenic mouse substrain provides protection from dermatitis. Nat Im-
munol (2013) 14 (6):584–92. doi:10.1038/ni.2585 25. Cai Y, Xue F, Fleming C, Yang
J, Ding C, Ma Y, et al. Differential develop- mental requirement and peripheral
regulation for dermal V γ 4 and V γ 6 T17 cells in health and inflammation. Nat
Commun (2014) 5 :3986. doi:10.1038/ ncomms4986

26. Roark CL, Aydintug MK, Lewis J, Yin X, Lahn M, Hahn YS, et al. Subset-
specific, uniform activation among V gamma 6/V delta 1+ gamma delta T cells
elicited by inflammation. J Leukoc Biol (2004) 75 (1):68–75. doi:10.1189/jlb.0703326

27. Mukasa A, Lahn M, Pflum EK, Born W, O’Brien RL. Evidence that the
same gamma delta T cells respond during infection-induced and autoimmune inflam-
mation. J Immunol (1997) 159 (12):5787–94.

28. Simonian PL, Roark CL, Diaz del Valle F, Palmer BE, Douglas IS, Ikuta K, et
al. Regulatory role of gammadelta T cells in the recruitment of CD4+ and CD8+ T
cells to lung and subsequent pulmonary fibrosis. J Immunol (2006) 177 (7):4436–43.
doi:10.4049/jimmunol.177.7.4436

29. Mukasa A, Lahn M, Pflum EK, Born W, O’Brien RL. Evidence that the
same gamma delta T cells respond during infection-induced and autoimmune inflam-
mation. J Immunol (1997) 159 (12):5787–94.

30. Tagawa T, Nishimura H, Yajima T, Hara H, Kishihara K, Matsuzaki G, et al.
Vdelta1+ gammadelta T cells producing CC chemokines may bridge a gap between
neutrophils and macrophages in innate immunity during Escherichia coli infection in
mice. J Immunol (2004) 173 (8):5156–64. doi:10. 4049/jimmunol.173.8.5156

31. Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vdelta1+
gam- madelta T cells control early infiltration of neutrophils after Escherichia coli
infection via IL-17 production. J Immunol (2007) 178 (7):4466–72. doi:10.4049/
jimmunol.178.7.4466

32. Sheridan BS, Romagnoli PA, Pham QM, Fu HH, Alonzo F III, Schubert WD,
et al. γδ T cells exhibit multifunctional and protective memory in intestinal tissues.
Immunity (2013) 39 (1):184–95. doi:10.1016/j.immuni.2013. 06.015



CHAPTER 2. READING SPECIFICITY WITH CONVERGENCE ANALYSIS210

33. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, et
al. IL-17A produced by gamma delta T cells plays a critical role in innate immu-
nity against Listeria monocytogenes infection in the liver. J Immunol (2008) 181
(5):3456–63. doi:10.4049/jimmunol.181.5.3456

34. Murphy AG, O’Keeffe KM, Lalor SJ, Maher BM, Mills KH, McLoughlin RM.
Staphylococcus aureus infection of mice expands a population of memory γδ T cells
that are protective against subsequent infection. J Immunol (2014) 192 (8):3697–708.
doi:10.4049/jimmunol.1303420

35. Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O’Brien RL.
Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma
delta T cells. J Immunol (2007) 179 (8):5576–83. doi:10.4049/jimmunol. 179.8.5576

36. Roark CL, Huang Y, Jin N, Aydintug MK, Casper T, Sun D, et al. A
canon- ical V γ 4V δ 4+ γδ T cell population with distinct stimulation require-
ments which promotes the Th17 response. Immunol Res (2013) 55 (1–3):217–30.
doi:10.1007/s12026-012-8364-9

37. Aydintug MK, Roark CL, Yin X, Wands JM, Born WK, O’Brien RL. Detection
of cell surface ligands for the gamma delta TCR using soluble TCRs. J Immunol
(2004) 172 (7):4167–75. doi:10.4049/jimmunol.172.7.4167

38. Aydintug MK, Roark CL, Chain JL, Born WK, O’Brien RL. Macrophages
express multiple ligands for gammadelta TCRs. Mol Immunol (2008) 45 (11):3253–63.
doi:10.1016/j.molimm.2008.02.031

39. Deng L, Velikovsky CA, Xu G, Iyer LM, Tasumi S, Kerzic MC, et al. A
structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey.
Proc Natl Acad Sci U S A (2010) 107 (30):13408–13. doi:10.1073/pnas.1005475107

2.3.7 Copyright

This work was published in the Frontiers in Immunology with the following reference:
Gamma/delta convergence Wei, Yu-Ling, et al. "A highly focused antigen receptor
repertoire characterizes γδ T cells that are poised to make IL-17 rapidly in naive
animals." Frontiers in immunology 6 (2015).



CHAPTER 2. READING SPECIFICITY WITH CONVERGENCE ANALYSIS211

2.4 Reading specificity in the B-cell receptor reper-

toire

IGHV polymorphism provides a rich source of humoral immune system diversity.
One important example is the IGHV1-69 germline gene where the biased use of alle-
les that encode the critical CDR- H2 Phe54 (F-alleles) to make broadly neutralizing
antibodies (HV1-69-sBnAb) to the influenza A hemagglutinin stem domain has been
clearly established. However, whether IGHV1-69 polymorphism can also modulate
B cell function and Ab repertoire expression through promoter and copy number
(CN) variations has not been reported, nor has whether IGHV1-69 allelic distribu-
tion is impacted by ethnicity. Here we studied a cohort of NIH H5N1 vaccinees and
demonstrate for the first time the influence of IGHV1-69 polymorphism on V-segment
usage, somatic hypermutation and B cell expansion that elucidates the dominance of
F-alleles in HV1-69-sBnAbs. We provide evidence that Phe54/Leu54 (F/L) poly-
morphism correlates with shifted repertoire usage of other IGHV germline genes. In
addition, we analyzed ethnically diverse individuals within the 1000 genomes project
and discovered marked variations in F- and L- genotypes and CN among the vari-
ous ethnic groups that may impact HV1- 69-sBnAb responses. These results have
immediate implications for understanding HV1-69-sBnAb responses at the individual
and population level and for the design and implementation of “universal” influenza
vaccine.

2.4.1 Introduction

Neutralizing antibody (nAb) responses to influenza infection and vaccination are
highly variable among individ- uals throughout the population. This observation can
in part be explained by differences associated with health status, exposure history, age
and host variability of immune response genes1. Since protection is also correlated
with nAb titers, any role that immunoglobulin (IG) germline gene polymorphism may
play in this variability is important to establish, but has been difficult to investigate
due to the use of numerous V, D and J genes in the genesis of immunoglobulins and
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the enormous combinatorial diversity that results from the pairing of rearranged VH
and VL genes. However, the discovery of biased usage of the IG heavy chain vari-
able (IGHV) germline gene IGHV1-69 in anti-hemagglutinin stem-directed broadly
neutralizing Abs (HV1-69-sBnAbs) and the finding that only the heavy chain makes
contact with hydrophobic HA stem2 has provided a unique opportunity to define the
molecular features of anti-influenza BnAbs and simplify immunogenetic studies to
understand the contribution of allelic variation at the IGHV1-69 locus to the anti-
influenza sBnAb response.

IGHV1-69 is one of the most polymorphic loci within the human IGHV gene
cluster (14q32.33), exhibit- ing both allelic and copy number (CN) variation3,4. There
are 14 alleles known to be associated with this gene that can be differentiated by the
presence of either a phenylalanine (F) or leucine (L) at amino acid position 54 (Kabat
numbering) within the apex of the CDR-H2 loop. Historically, this classification refers
to the 51p1-like and hv1263-like allelic groups, respectively (Supplementary Fig. 1a).
In addition to coding polymorphisms, the number of IGHV1-69 germline copies per
diploid human genome can vary from 2–4 (Supplementary Fig. 1b)3,5,6, and there
are 4 IGHV1-69 haplotypes with gene duplications in an earlier established American
cohort5 (Supplementary Fig. 1c).

The relevance of F/L polymorphism to HV1-69-sBnAbs is the fact that almost all
of these Abs originate from the IGHV1-69 F-allelic group. The conserved CDR-H2
Phe54 is a major anchor residue making direct contact with HA, and the replace-
ment of Phe54 by Ala54 or Leu54 (L) has been shown to dramatically reduce binding
affinities7,8. Importantly, in this study and in two recent studies9,10 the F/L poly-
morphism is shown to correlate with the frequencies of HV1-69-sBnAbs, being highest
in individuals carrying F-alleles. In contrast, the predom- inant usage of the L-allele
group in generation of non-neutralizing anti-gp41 Abs was recently demonstrated in
a HIV-1 vaccination study11. These recent findings highlight the need to better un-
derstand how this genetic var- iability at the IGHV1-69 locus can modulate B cell
repertoires as well as the extent to which this polymorphism varies across diverse hu-
man populations3,5,6,12. To address these two questions we analyzed Ab repertoires
from an NIH H5N1 vaccinee cohort and samples from the 1000 Genomes Project
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(1KG)13, respectively. We report the new finding that the two allele families have
markedly different effects on Ab repertoire expression that is in part explained by CN
variation but there are also differences in B cell expansion and somatic hypermuta-
tion. In addition, we discovered marked variance in IGHV1-69 gene duplication and
CN among the different ethnic populations that will affect HV1-69-sBnAb responses
to influenza vaccines and natural infections.

2.4.2 Results

Comparison of antibody responses to H5N1 vaccine among three IGHV1-69 geno-
typic groups. Individuals from a 2007 H5N1 vaccination trial were genotyped and
phenotyped for IGHV1-69 CDR-H2 Phe54 F/L polymorphism (rs55891010; see Fig.
1a and methods). Their one month post-vaccination sera was competed against the
anti-stem sBnAb F10 for binding to the pandemic H1CA0709 HA, which was not
circulating when the serum samples were collected. Figure 1b shows a statistically
significant difference in F10 blocking activity among the groups and was highest for
the F/F group, followed in decreasing order by the F/L and L/L groups. The mi-
croneutralization titers (MN) for the F/F group were 1.67 and 2.29 fold higher than
the mean values for F/L and L/L groups, respectively with a similar trend in their
median values (Supplementary Fig. 2a). The post-vaccination hemagglutination in-
hibition titers (HAI) and the ELISA titers for H1CA0709 and H1CA0709 HA proteins
were shown to not significantly differ from one another among the three IGHV1-69
genotypic groups (Supplementary Fig. 2b,d,e). In addition, when HAI and MN titers
were compared within indi- viduals, there was also a trend toward lower HAI/MN
ratios for the F/F and F/L groups compared to the L/L individuals (Supplementary
Fig. 2c). Supplementary Fig. 3 shows that stem binding activity originally boosted
by H5VN04 vaccination was generally maintained within each genotypic group over
the 4-year period. The similar trends observed in the analysis of the F10 competi-
tion studies, MN titers, and HAI/MN ratios supports the con- cept that IGHV1-69
germline polymorphism has an effect on the profile of the HA-directed Ab response,
with expression from F-alleles leading to a higher Ab response to the stem domain.
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Figure 2.21: Correlation between IGHV1-69 polymorphism and Ab response to the
H5 vaccine. The pre- vaccinated sera of the 85 individuals were diluted 1/1250 and
analyzed for binding activities against the anti- IGHV1-69 idiotype mAb G6. Binding
activities were normalized by subtracting the G6 MSD signal with the MSD signal
obtained from an isotype control, and by using a standard curve made with the
IGHV1-69 F-allele- based IgG Ab D8035. (b) Post-vaccination sera (diluted 1/125)
were competed with the anti-stem Ab F10 IgG for binding to H1CA0709. Cuzick’s
trend test was used to further confirm that the occurrence of F-alleles increases the
ability of serum to block F10 binding (L/L = 0, F/L = 1, F/F = 2). Error bars
represent standard error of mean.
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Effect on IGHV1-69 polymorphism on germline gene utilization and expressed
HV1-69-sBnAb repertoires. To assess the role of IGH locus polymorphism on ex-
pressed IGHV1-69 germline gene reper- toires ≥5 × 106 PBMCs (circa 10% B cells)
were analyzed from the blood samples of 18 individuals (F/F = 4, F/L = 11, L/L
= 3), collected 4 years following the H5N1 vaccine trial. The IGHV-gene frequencies
from inde- pendent V(D)J rearrangements were rendered non-redundant, and IgM
and IgG class determinations were made by analyzing the PCR products obtained
from reverse priming with IG constant region primers. Figure 2 shows that in both the
unmutated IgM (naïve) and all IgG (memory) V-segment datasets, IGHV1-69 usage
was at the highest frequency in the F/F group (7.7% IgM, 3.9% IgG), intermediate
frequency in the F/L group (4.7% IgM, 3% IgG), and the lowest frequency in the L/L
group (1.8% IgM, 1.4% IgG). The significance of the ~3-fold difference in IGHV1-69
usage between the F/F and L/L groups was further demonstrated by noting that, in
the F/F group, IGHV1-69 was the 4th and 7th most frequently used IGHV germline
gene in the unmutated IgM and IgG datasets, respectively, whereas in the L/L group
IGHV1-69 was ranked 18th and 23rd (data not shown). This variation in IGHV1-69
germline gene utilization was also seen for putative HV1-69-sBnAbs with the high-
est frequencies and correlation coefficients in individuals with F/F alleles and across
the IgM B cell subset (Supplementary Fig. 4a–d). We have been able to further
delineate some of these HV1-69-sBnAbs signatures through functional analyses (Sup-
plementary Fig. 5 and text). These results demonstrate that F-allele individuals
have higher levels of circulat- ing IGHV1-69 Ab and HV1-69-sBnAb repertoires than
L-allele individuals.

Differential effects of IGHV1-69 genotype on B cell expansion, somatic hypermu-
tation (SHM) and evolution to HV1-69-sBnAb clones. We next investigated if other B
cell functions were affected by IGHV1-69 genotype. Analysis of the naive and memory
IGHV1-69 datasets within each individual’s repertoire revealed additional variation
in clonal expansion, SHM frequency, and IgG-to-IgM ratios among each geno- typic
group. For example, the frequency of highly expanded IGHV1-69 clones (frequency
> 1e-4) was greater for L/L than the F/L or F/F genotypic groups (Supplementary
Fig. 6a). However, the clones of the F/F group, of which there were fewer highly
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Figure 2.22: Analyzing IGHV1-69 V-segment gene utilization among the three
IGHV1-69 genotypic groups. (a) The frequency of IGHV1-69 IgM clones defined
by unmutated V-segments (b) the frequency of IGHV1-69 IgG clones. Error bars
represent standard error of mean.

expanded clones, were also significantly more mutated than those of the L/L group
(Supplementary Fig. 6b). Additionally, we note that IGHV1-69 is unusual among
V-genes in that these BCRs appear at a lower frequency in memory B-cells than in
naïve B-cells (Supplementary Fig. 6c) (an approximately 40% reduction)14. Inter-
estingly, this effect was strongest in individuals of the F/F genotype. These results
suggest that the capacity of the IGHV1-69 B cells to undergo expansion, SHM and
Ig class switching may be different among the genotypic groups.

An expanded dataset of 57 published HV1-69-sBnAbs2,9,15 was also used to inves-
tigate the effects of allele var- iation on SHM and VDJ recombination that results in
the signature CDR-H3 amino acids G95, P96 and Y99 ± 1 (Supplementary Fig. 6d).
The effects of IGHV1-69 allelic variation revealed that transition from the germline
L54 to the critical F54 in L/L individuals through SHM was a rare event (Supple-
mentary Fig. 6e), as was the occurrence of HV1-69-sBnAb CDR-H3 signatures in the
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IgG dataset (Supplementary Fig. 6f). The higher fre- quencies of V-segment amino
acid substitutions at positions that are significantly enriched in HV1-69-sBnAbs in
the L/L group (Supplementary Fig. 6g) suggests that these Abs may be evolving to
compensate for the lack of Phe549. Collectively, this analysis implies that the scarcity
of HV1-69-sBnAb in L-allele individuals was due to the underutilization of this allelic
type by the immune system.

IGHV1-69 Copy Number and Regulatory Region SNPs. We further studied the
potential correla- tion between IGHV1-69 usage and F-allele copy number (CN)12.
We found a significant positive correlation between both unmutated IgM and IgG
IGHV1-69 utilization and increasing IGHV1-69 F-allele copy number (Fig. 3) (Spear-
man, IgM r = 0.91, P < 0.0001; IgG r = 0.75, P < 0.0003). A strong positive corre-
lation was also seen between CN and IgM but a weaker one for IgG HV1-69-sBnAb
clonal frequencies suggesting that the IgG switch memory B cell subset is subject
to additional regulation (Supplementary Fig. 4e,f). Interestingly, all L/L individuals
were found to have a mean CN = 2 and they also had the lowest IGHV1-69 utilization
among the three genotypic groups that include individuals whom lack gene duplica-
tion (Fig. 3 insets), suggesting that CNV only partially explains the lower IGHV1-69
utilization. For this reason we also investigated other genetic variants in strong link-
age disequilibrium (LD) with IGHV1-69 alleles that could represent SNPs that may
influ- ence the control of transcription or V-D-J recombination rates (e.g., variants in
the 5´UTR and recombination signal sequences). SNPs within the vicinity of IGHV1-
69 (+− 1.5 kb; GRCh37, chr14:107168431-107171928) in LD with the F/L variant
(rs55891010) were identified using data from the 1 KG phase3 dataset for African
(n = 661), Asian (n = 504), and European (n = 503) populations. Only four SNPs
had an r2 > 0.8 in at least one of the three populations (Supplementary Fig. 7a).
Two of the identified SNPs represented additional coding variants within IGHV1-69,
and the remaining two occurred upstream of the leader sequence ATG start codon.
The SNP rs10220412 was found to reside in the 5´ UTR of IGHV1-69 and within a
promoter initiator element16 which is also a binding motif of the B cell associated
protein RUNX3, that has been shown to bind to this region in a lymphoblastoid cell
line ChIP-seq dataset17 (Supplementary Fig. 7b). RUNX3 has been shown to be
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Figure 2.23: Correlating IGHV1-69 F-allele copy number with IGHV1-69 utilization.
(a) Correlating F-allele CN with the frequency of IGHV1-69 IgM clones defined by
unmutated V-segments. (b) Correlating F-allele CN with the frequency of IgG clones.
The insets in both panels (a) and (b) describe IGHV1-69 clone frequency in individuals
that lack IGHV1-69 gene duplication (Arrows point to overly of two L/L individuals).

elevated following EBV infection or activation by PMA of primary B cells and is
proposed to have a role in B cell prolifer- ation18,19. These findings suggest that
genetic factors beyond CN can influence IGHV1-69 transcript frequencies and that
the rs10220412 SNP is a candidate that may affect Ab gene transcription in L-allele
individuals by hin- dering the association of RUNX3 to this variant RUNX3/Inr site.

IGHV1-69 polymorphism has broad effects on the expressed IGHV repertoire. The
underutiliza- tion of IGHV1-69 germline genes in L/L individuals led us to investigate
whether the F/L polymorphism was also associated with different usage frequencies
of other V-genes in naïve and memory repertoires. In Fig. 4a,b V-gene frequencies
were averaged across individuals within each IGHV1-69 genotypic group using data
from the unmu- tated IgM and all IgG V-segments, respectively, and aligned accord-
ing to their relative position in the IGH locus on chr14. In addition to IGHV1-69,
IGHV2-70 utilization was also significantly different in both the unmutated IgM and
IgG datasets with repertoire frequencies being highest for the F/F and lowest for
the L/L group (Spearman, IgM r = 0.64, P = 0.0046; IgG r = 0.57, P = 0.0131)
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(Fig. 4c,d). This is likely explained by the fact that IGHV1-69 and IGHV2-70 re-
side on the same duplicated genomic segment of IGHV, and thus exhibit correlated
increases in CN3 (Supplementary Fig. 1b). However, we also found evidence of more
spatially separated associations between IGHV1-69 locus polymorphism and other
IGHV genes. For example, in the IgG subset, IGHV4-30- 4/31 usage was shown to
have a significant positive correlation with the occurrence of L-alleles (r = −0.53, P
= 0.0223) (Insert Fig. 4c (compare red bars)). Although IGHV4-30-4/31 does not
achieve significance in the IgM dataset, it was apparent that IGHV4-30-4/31 was
part of a cluster of IGHV genes which include IGH4-30-2, IGHV3-30/33rn, IGHV4-
28 and IGHV3-23 (Inset Fig. 4c,d), all of which were defined by weak to moderate
negative correlation coefficients (r = −0.17 to −0.53) and exhibit the highest usage
frequencies in L/L individ- uals. To further assess V-gene usage differences in L/L
individuals, we compared V-gene repertoire frequencies between the L/L group and a
combined F/L-F/F group using a t-test, and visualized these differences using heat-
maps (Supplementary Fig. 8a). This analysis revealed that, in the unmutated IgM
dataset, IGHV3-30/33rn and IGHV4-30-2 were consistently more highly expressed
in the L/L group compared to the F/L-F/F group (P < 0.05), whereas IGHV1-
24, IGHV1-69, IGHV2-70 and IGHV3-49 were significantly underrepresented in L/L
individuals (P < 0.05). In the IgG subset, IGHV4-30-2 and IGHV4-30-4/31 were
significantly overrepresented in the L/L group (P < 0.05), and again IGHV1-69 was
significantly underrepresented (P < 0.05; Supplementary Fig. 8b). Taken together,
we observe that multiple clusters of V-genes within the IGHV locus are positively or
negatively correlated with IGHV1-69 genotype.

IGHV1-69 F/L polymorphism, copy number and gene duplication among different
ethnic groups. To further investigate the association between F/L polymorphism
and CN we examined published rs55891010 genotypes13 and CN3 in 288 samples
from 3 broad ethnic groups (African, Asian, and European) of the 1 KG Project13.
Consistent with observations from our H5N1 vaccinee cohort (Fig. 5a upper table), in
the combined set of 1 KG samples we found a strong association between rs55891010
genotypes and CN, with higher mean IGHV1-69 CN in F/F (mean = 2.53) and F/L
(mean = 2.46) individuals compared to individuals of the L/L genotype (mean =



CHAPTER 2. READING SPECIFICITY WITH CONVERGENCE ANALYSIS220

Figure 2.24: The antibody repertoire of the three IGHV1-69 genotypic groups. V-
gene frequencies were averaged for the L/L group (n = 3), F/L group (n = 11),
and F/F group (n = 4) from the datasets of IgM clones characterized by unmutated
V-segments (a) and IgG clones (b). The majority of the functional V-genes were
tabulated according to their respective positions in the IGH locus (further detailed
in Supplementary Fig. 11). Asterisks denote V-genes utilized differently among the
three genotypic groups as determined by Kruskal- Wallis test (P < 0.05). Error bars
represent standard error of mean. In panels (c,d) Spearman correlation coefficients
are derived for the data presented in panels (a,b) with L/L = 0, F/L = 1, and
F/F = 2. Asterisks indicate statistically significant correlations (P < 0.05). Red
rectangles point to the location of IGHV1-69 and IGHV2-70, for which their usages
were significantly different among the three genotypic groups, being the highest in
the F/F group and lowest in the L/L group, in both the unmutated IgM and IgG
datasets. The inset panels are enlarged cropped sections from Panel (a,b) of the
IGHV4-30-4/31-to-IGHV3-23 region that is negatively correlated with F-alleles.
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2; Fig. 5a). We next partitioned these 1 KG samples by ethnicity, which revealed
dramatic population differences in frequency of IGHV1-69 genotypes (Fig. 5a). A
significant relationship between IGHV1- 69 genotype and CN was found in Europeans,
with mean IGHV1-69 CN estimates of 2.55, 2.39, and 2, for F/F, F/L, and L/L
genotypic classes, respectively. This relationship, however, was not clear in the Asian
population, as none of the F/F samples in our analysis were found to have greater
than 2 copies of IGHV1-69 (Fig. 5a,b). Additionally, in the African population, as
noted previously3, CN was higher on average overall, but in contrast to Europeans,
there was a much larger fraction of F/L individuals, and the majority of these samples
were found to have 3 copies of IGHV1-69. The CN trends were also corroborated by
a second IGHV1-69 gene duplication assay (Supplementary Fig. 9a,b). The African
group was also defined by a marked low frequency of L/L individuals (Fig. 5a,b).

Next we expanded our analysis of the IGHV1-69 rs55891010 polymorphism to
include all samples of the 1 KG cohort (Supplementary Fig. 10). We found that the
frequency of the L/L genotype varied considerably across human populations, with the
lowest frequencies occurring in samples of African ancestry, and the highest in South
Asian populations; as expected, opposite trends were noted for the F/F genotype.
Taken together, these analyses indicate that interrelationships among IGHV1-69 F/L
genotype, CN and IGHV loci genomic architec- ture likely exhibit population-specific
patterns that may have broad implications for mounting broadly protective HV1-
69-sBnAb responses.

2.4.3 Discussion

There is growing evidence that IG polymorphism may have a critically important
role in Ab responses20. Allelic variation exists in many IGHV, IGKV, and IGLV
germline genes and the results reported herein demonstrate that these genetic differ-
ences at the IGHV1-69 locus can modulate the nAb response. In a cohort of NIH
H5N1 vaccinees21,22, we found higher anti-stem competition and MN titers but not
HAI titers in the F/F group. The stem competition results are in agreement with the
reports by Pappas9 following seasonal influenza vaccination and Wheatley10 following
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Figure 2.25: IGHV1-69 F/L polymorphism and CN variations among various ethnici-
ties. (a) Table including mean IGHV1-69 copy number estimates after partitioning by
IGHV1-69 rs55891010 genotype, provided for the total combined population, for three
broad ethnic groups and the NIH cohort samples that were analyzed by NGS. Bubble
plots corresponding to IGHV1- 69 CN for each genotypic class in the total combined
population (a, lower) and individual ethnic groups (b). In each plot, the area of a
given circle is proportional to the number of individuals observed for that particular
combination of IGHV1-69 CN and rs55891010 genotype relative to the number of
samples analyzed in each group (e.g., Combined, African, Asian, or European).
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a H5 DNA vaccine. Thus, the strong correlation between IGHV1-69 polymorphism
and HV1-69-sBnAb responses provided support for establishing a deeper understand-
ing of the immunobiology of IGHV1-69 B cells. Likewise, it is important to gain
knowledge on the extent to which the distribution of F/F, F/L and L/L individuals
vary among the population. Here we demonstrated for the first time the influence of
IGHV1-69 polymorphism on V-segment usage, SHM and B cell expansion that ex-
plain the dominance of F-alleles in HV1- 69-sBnAbs. We also provided evidence that
F/L polymorphism is associated with shifted repertoire usage of other IGHV genes.
Marked variations in F- and L- genotypes and IGHV1-69 CN are also demonstrated
among various ethnic groups.

Ab repertoire analysis revealed that IGHV1-69 utilization increased from L/L
to F/L to F/F individuals in both the naive and memory subsets. The correlation
observed between F-allele CN and IGHV1-69 gene usage only partially explained this
trend. However the higher IGHV1-69 gene usage in F-allele individuals whom lack
gene duplication over L/L individuals suggested that IGHV1-69 polymorphism in
non-coding regions also had an effect on germline gene expression. We found a strong
LD between the F/L polymorphism and SNP rs10220412, located in the 5´ UTR of
IGHV1-69, within the promoter initiator element16 and an annotated binding motif of
the B cell associated protein RUNX317. We suggest that the non-consensus mutation
in this RUNX3 binding motif found in L/L individuals may affect Ab transcription
and/or B cell proliferation18,19. Additional analyses aimed at investigating the role
of SNP rs10220412 will be essential to fully understand the observed relationship
between the IGHV1-69 polymorphism, germline gene utilization and circulating Ab
repertoires. Other genetic factors that were not identified in our studies may also be
involved.

Our results also show that both IGHV1-69 F- and L-allele B cells share similar
frequency of unmutated IgM clones defined by CDR-H3 HV1-69-sBnAb signatures,
however only F-allele B-cells show these elevated signa- tures in the memory com-
partment while L-allele B-cells are recessive in their ability to readily resolve HA neu-
tralization in this manner. Indeed, estimates can be made to the frequency of HV1-
69-sBnAb precursor B-cells (Supplementary Fig. 6). While 1.8% of the repertoire of
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an F/F genotype individual and 0.6% of the repertoire of an F/L individual will have
an appropriate progenitor CDR-H3 signature rearranged on a IGHV1-69-F54 V-gene,
an L/L genotype repertoire will have roughly one in ten thousand (0.01%) B-cells
configured with the minimal signatures that appear necessary for HV1-69-sBnAbs
generation. These results strongly suggest that L/L individ- uals must reconcile sB-
nAb responses through the use of other VH germline genes.

The overall variance in IGHV1-69 utilization among the three genotypic groups
was associated with differ- ential usage of other IGHV germline genes. Interestingly,
our analyses point to a cluster of IGHV genes circa IGHV3-30 (Fig. 4: IGHV4-
30-4/31, IGH4-30-2, IGHV3-30/33rn, IGHV4-28 and IGHV3-23) that are positively
correlated with the presence of L-alleles. Although long-range haplotypes spanning
the length of the IGHV locus have not been characterized, one possible explanation for
this correlation is that L/L individuals could have a dis- tinct IGHV locus architecture
that promotes increased VDJ recombination events that preferentially utilize IGHV
germline genes within the region of IGHV3-30. This could result in shifting of germline
gene usage within the Ab repertoire. This positive correlation with L-alleles is of
particular interest as there are several reports of sBnAbs that are based on the IGHV3-
30 V-gene23–25. Further studies might show that L/L individuals carry additional
copies of the IGHV3-30 and IGHV3-23 genes, both of which are known to vary in copy
number3,20. Alternatively, it is also plausible that IGHV1-69 duplication haplotypes
contain architectural features that reduce the accessibil- ity and therefore utilization
of genes in the IGHV3-30 region.

Further characterization of CN frequencies in the context of ethnic background
using 1 KG samples fur- ther supports our observation that gene duplication events
(CN > 2) rarely occur in L/L individuals (Fig. 5, Supplementary Fig. 9). However,
remarkable population-specific diversity was observed in CN frequencies in the F/L
and F/F genotypes. The majority of the African individuals bear IGHV1-69 gene
duplication while in the Asian groups gene duplication hardly occurs. Indeed, nearly
every CNV studied in IGHV to date has been shown to exhibit population-specific
patterns3,26,27. This remarkable population-specific diversity is also demonstrated
with the frequencies of the F/L genotypes. Indeed, the frequency of L/L individuals
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is miniscule in the African group (~2%), while to the other extreme L/L individuals
comprise 41.3% of the South Asian population (Fig. 5, Supplementary Fig. 10).
These results imply that individuals of different ethnicities may vary in their capacity
to elicit HV1-69-sBnAbs by natural infection or vaccination.

In conclusion, our studies of IGHV1-69 polymorphism have provided an important
entry point to further understand the impact of IGH polymorphism on host nAb
responses. We have discovered several important biological associations that had not
been previously described. We also uncovered a marked association between IGHV1-
69 polymorphism and ethnicity. The combined genotypic, molecular and phenotypic
analyses as pre- sented in this study offer a new approach to understand vaccine
responsiveness at the individual and population level. Indeed, IGHV1-69 genotypes
were shown to correlate with anti-HA stem titers and circulating HV1- 69-sBnAb
repertoires. Clearly defined associations between B cell genotype and phenotype are
likely to emerge from these studies, and together with serologic analyses of pre-28,29
and post- exposure Ab responses should lead to important advances in our knowledge
of B cell responses to influenza. We propose that the establishment of a complete
human IGHV haplotype map is needed to catalogue and map genomic variation in the
IGHV locus from larger cohorts of individuals of different ethnicities. This advance
will naturally lead to the development of complementary high-throughput genotyping
tools that may prove useful for predicting vaccine responsiveness at the individual and
population levels. This progress will be particularly important for the development
and moni- toring of next generation “universal” influenza vaccines30–34.

2.4.4 Methods

Ethics statement. All the experiments were performed in accordance with the ap-
proved guidelines and reg- ulations of the Institutional Review Boards (IRBs). Specif-
ically, the samples from H5N1 vaccinee cohort at NIH/ NIAID were collected under
NIH IRB approved Study # 06-I-0235 (Clinical Trials.gov identifier: NCT00383071),
titled “A Phase II Vaccine Dose Finding Pilot Study for Development of an Anti-
Influenza A (H5Nl) Intravenous Hyper-Immune Globulin”. Informed consent was
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obtained from all participants. Experiment protocols involving human samples were
approved by DFCI IRB and performed under the regulation of the DFCI Legacy #
11–093.

Details of the H5 vaccination cohort. In the H5N1 vaccination study (Clinical
Trials.gov identifier: NCT00383071), the effect of varying amounts of H5 protein and
various numbers of vaccinations was tested using the (rgA/H5N1 Vietnam/1203/04
X A/PR/8/34) manufactured by Sanofi Pasteur Inc, Swiftwater, PA. The study con-
cluded that additional vaccinations increased HAI and MN titers, but not increasing
vaccine dose. The Kruskal-Wallis test indicated that three groups do not differ in
the number of vaccinations (P = 0.37), therefore variance in antibody response to the
H5N1 vaccine among the three genotypic groups (F/F, F/L, and L/L) is not predicted
to be the result of differences number of vaccinations.

Competing sera with F10 for binding to H1CA0709. MSD 384-well standard
plate coated overnight with 6.25 ng of H1CA0709 (A/California/07/2009, Influenza
Reagent Resource (IRR) FR-559)) were washed 1 time with PBS and blocked for
1 h at 37 °C with 2% BSA/PBS. After blocking, sera (pre or post) diluted 1/125
in 2% milk/PBST was added to the plate for 45 min at 37 °C, after which 62.5
ng/mL of F1035 labeled with sulfo-tag was added for an additional 45 min at 37 °C.
Following washes with PBST, read buffer was added and the plate was read using a
Sector Imager 2400 instrument. The threshold of 100% inhibition was derived from
the wells processed with the dilution buffer, and the threshold of 0% inhibition was
obtained from binding of F10 to wells containing dilution buffer.

MSD ELISA assay for analyzing binding of post-vaccination sera H1CA0709 and
H1CA0709 HA1. MSD 384-well high bind plates coated overnight with 25 ng of
H1CA0709 and H1CA0709 HA1 (IRR FR-695) were washed 1 time with PBS and
blocked for 1 h at 37 °C with 2% BSA/PBS. After blocking, post-vaccination serum
samples diluted 1/7500 for H1CA0709 and 1/1500 for H1CA0709 HA1 in 2% milk/
PBST were added to the plates for 45 min at 37 °C. Following washes with PBST
Goat-anti-human IgG sulfo-tag antibody diluted in 2% milk/PBST was added for 45
min at 37 °C. Following washes with PBST, read buffer was added and the plate was
read using a Sector Imager 2400 instrument.
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Figure 2.26: The binding activities of synthesized HV1-69-sBnAb precursor clones
to hemagglutinins. (a) Six clones characterized by notable HV1-69-sBnAb sig-
natures (maroon residues) were cloned into phagemid light chain shuffle libraries
(kappa/lambda). For each clone, also shown is the number of clonally related or du-
plicated clones (b) The 1:1 mixed lambda and kappa phagemid libraries were selected
against H5VN04 and the rescued bulk phagemid libraries were analyzed for binding
activities against H5VN04, H1CA0709, H3PE09, and against a negative control pro-
tein, using 1e13 phagemid particles/mL. Mehta I was used as a control phagemid
library. (c) Binding kinetic profile of clone 48.1 as scFv-Fc against 10 μg/ml of
H1CA0709, H2JPN57, H5VN04, H3PE09, and H7NE03. (d) Detailed binding ki-
netics of clone 48.1 against H2JPN57.
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Next generation sequencing. RNA was extracted from cryopreserved PBMCs by
using RiboPure Kit. cDNA was generated by using Superscript RT II kit with 100–600
ng of RNA and oligo-dT primer. VH libraries were generated from cDNA template
using Taq polymerase with ThermoPol buffer for multiplex PCR. Primers used for
PCR were an equimolar mix of eight forward primers and two reverse primers pre-
viously described in36. Reactions were carried out using 0.2μM both forward and
reverse primer mixes and 2μL cDNA in 50μL total volume. Cycling conditions were
as follows: 92 °C denaturation for 3 min, 92 °C for 1 min, 50 °C for 1 m, 72 °C
for 1m for 4 cycles, 92°C for 1min, 55°C for 1m, 72°C for 1m for 4cycles, 92°C for
1min, 63°C for 1m, 72°C for 1m for 20 cycles, 72 °C for 7 min, hold at 4 °C. PCR
reactions performed in replicates were pooled and purified by spin column using a
QiaQuick PCR Purification Kit. The cDNA products were ligated with indexed Illu-
mina adapters using Thruplex DNAseq. The adapter ligated libraries were quantified
by qPCR (Kapa Biosystems cat# KK4824), pooled in equal quantities, and then
sequenced using MiSeq 250 bp paired-end reads by the Dana-Farber Cancer Institute
Molecular Biology Core Facilities. All kits were used according to the manufacturer’s
protocols.

Genotyping assays. Individuals of the H5N1 vaccination trial were genotyped by
real time PCR approach and by ELISA assay with the anti-IGHV1-69 idiotype mouse
mAb G6, which does not bind to IGHV1-69 Abs displaying CDR-H2 Leu5437. This
combined genotyping/phenotyping approach enabled us to classify with confi- dence
85 of the 86 individuals as follows: F/F (G6 + ) = F/L (G6 + ) = 49, and 14 L/L
(G6−).

Real time PCR genotyping approach. Two allelic-group-specific TaqMan (Ap-
plied Biosystems) probes were designed to distinguish codon variants of IGHV1-69,
encoding either the CDR-H2 Leu54 (L-alleles) or Phe54 (F-alleles) alleles, allow-
ing the estimation of the number of copies of each allele in each sample (F-alleles,
Forward = TGGACAAGGGCTTGAGTGGAT; Reverse = CCCTGGAACTTCT-
GTGCGTAGT; Reporter Sequence = CCCTATCTTTGGTACAGC. L-alleles, for-
ward = TGGACAAGGGCTTGAGTGGAT; Reverse = C CCTGGAACTTCTGT-
GCGTAGT; Reporter Sequence = CCTATCCTTGGTATAGCA, all are 5´-3´). For
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twenty individuals which donated blood 4 years post vaccination, polymorphonuclear
cells were isolated by a stand- ard dextran approach38 from which genomic DNA was
extracted using QIAGEN’s DNeasy Blood & Tissue Kit. TaqMan PCR assays were
performed at least two times with at least three replicates using Applied Biosystems
7300 Real-Time PCR System, and for each sample allelic CN counts were estimated
using the delta-delta-CT method. The other 66 individuals were genotyped with
the TaqMan probes by using PCR amplified IGHV1-69 gene product obtained from
residual circulating DNA found in the serum. Circulated DNA was isolated from
100–200μl of pre-vaccination, 1 month post-vaccination, and 4 years post-vaccination
sera by using ZR-96 Quick-gDNA Blood kit by ZYMO research, and the IGHV1-69
gene was amplified using QIAGEN’s HotStarTaq Plus Master Mix Kit, with 3ul of
the circulated DNA eluent, and forward primer that anneals in the V-segment intron
domain and a reverse primer that anneals in the V-segment RSS domain. Cycling
conditions were as fol- lows: 95°C min, [94°C 1min, 50°C 1min, 72°C 1min]×50, 72°C
10min, 4°C 16h. Real time PCR analysis was performed by diluting the PCR prod-
ucts 1-to-1e6 and the TaqMan probes described above were used in order to determine
IGHV1-69 allele composition. Samples were analyzed using CFX384 instrument by
Biorad, and Cq and END RFU thresholds for F/F, F/L, and L/L were generated
from the sera samples of the 20 individuals which were genotyped using genomic
DNA. For samples that did not amplify, a second PCR was performed or residual
DNA was isolated again. For confidence purposes both the pre and post-vaccination
sera were analyzed, and in situations where there was no agreement residual DNA
was isolated again from the pre- and post-vaccination samples and the real time PCR
was repeated.

MSD ELISA assay for analyzing binding of pre-vaccination sera to G6. MSD 384-
well high bind plates coated overnight with 6.25 ng of G6 and with isotype control
mAb 1D4, were washed 1 time with PBS and blocked for 1 h at 37 °C with 2%
BSA/PBS. After blocking pre-vaccination sera diluted 1/1250 in 2% milk/PBST as
well as serial dilutions of the IGHV1-69 F54 allele-based IgG Ab D8035 were added
to the plate for a period of 1 h at 37 °C. After washing the plates with PBST, Goat-
anti-human-IgG sulfo-tag antibody diluted in 2%milk PBST was added for 1 h at 37
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Figure 2.27: Variances in IGHV1-69 clonal expansion, IgG to IgM ratio, and expan-
sion in-situ evolution of HV1-69-sBnAb precursors. The three genotypic groups were
analyzed for the number of highly expanded clones (frequency of >1e-4) (a); their
percent germline identity (b); and the ratio of IgG to IgM clones defined by unmu-
tated V-segments (c). Spearman correlation coefficients (r) were used to summarize
the association. Error bars represent standard error of mean; (d-f) in order to decon-
struct the in-situ evolution of HV1-69-sBnAb precursors, the positional amino acid
variability of 57 HV1-69- sBnAbs were compared to the total IGHV1-69 repertoires
of F/F individuals. (d) Numerous amino acids in the rearranged VH segment are
over-represented in the HV1-69-sBnAbs. Positions under significant selection are in-
dicated by asterisks. HV1-69-sBnAb precursor signature variation can be classified
into genotype derived allele variation, VDJ recombination- derived CDR-H3 varia-
tion, and somatic hypermutation-derived positional arming (highlighted as red (e),
green (f) and blue (g), respectively). (e) IGH genotype dictates the abundance of to-
tal IGHV1-69 and IGHV1-69+F54 BCRs in the repertoire. In both unmutated IgM
and class- switched IgG, F54 IGHV1-69 receptors are abundant in F-allele bearing
individuals and nearly absent in L/L homozygotes. (f) Generation of HV1-69-sBnAbs
CDR3 signatures, dominated by Tyr98-100, a preference for Gly95 and Pro96, and
an aversion to Asp95 though VDJ recombination. In the unmutated IgM repertoire,
all genotypes have similar frequencies of progenitor HV1-69-sBnAbs CDR-H3 signa-
tures, but only remain elevated in class-switched IgG memory in individuals with
F/L or F/F Phe54 genotypes, while loss of HV1-69-sBnAbs CDR-H3 in memory is
L-recessive. (g) V-segment somatic hypermutation favors six specific positional amino
acid changes in HV1-69-sBnAbs. These substitutions are absent in the unmutated
IgM, but are expanded in IgG memory. L-allele homozygotes exhibit elevated SHM
at these sites.
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°C. Following washes with PBST, read buffer was added and the plate was read using
Sector Imager 2400 instrument. G6 binding activities were normalized by subtracting
the G6 MSD signal from the MSD signal obtained for 1D4, and by using a standard
curve generated from D80 binding activities to G6.

Analysis of IGHV1-69 SNP and copy number/duplication data for samples de-
rived from the 1000 Genomes Project. To investigate potential relationships between
genotypic variation at the IGHV1- 69 F/L SNP variant (rs55891010) and gene copy
number, as well as IGHV1-69 regulatory polymorphisms, we used available CNV and
SNP data from two previous studies3,13. CNV genotype calls were previously esti-
mated for 425 individuals from a broad set of human populations based on standard
PCR and targeted TaqMan qPCR assays unique to sequence characterized within
the IGHV1-69 duplication haplotype (see3 and Supplementary Fig. 9a). In total,
288 samples had both CNV and SNP data for comparisons across three broad ethnic
groups (African, n = 78; East Asian, n = 85; European, n = 125) represented by
7 subpopulations (Yoruba in Ibadan, Nigeria; Luhya in Webuye, Kenya; Japanese
in Tokyo, Japan; Han Chinese in Bejing, China; Toscani in Italy; British in Eng-
land and Scotland; Finnish in Finland). Additional analyses of allele and genotype
frequency dif- ferences at rs55891010 in a larger sample of human populations were
conducted using genotypes downloaded from the 1 KG project for 5 broad ethnic
groups (African, n = 661; East Asian, n = 504; South Asian, n = 489; American, n
= 347; European, n = 503).

Antibody repertoire sequence analysis. Sequences were demultiplexed by Illumina
DNA barcodes, converted from fastq to fasta and paired-end assembled. Barcode and
primer sequences in the V-segment were then removed from all reads. Sequences were
then processed using the AbGenesis VDJFasta pipeline to iden- tify V,D,J segments,
isotype, and translated CDRs, as previously described39. Samples were rendered
clonally non-redundant to include one unique representative of each V + J + CDR-
H3 sequence as described in14. Somatic hypermutation burden on each clone was
determined by number of non-templated base mismatches to the iden- tified V-gene
and J-gene, using the closest allele in IMGT4.
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Expression of HV1-69-sBnAb precursor clones. The selected six VH genes were
synthesized by Genewiz (Plainfield, NJ) with a 5´ SfiI and a 3´ BspEI restriction
sites. The VH genes were cloned into two pFarber phagemid scFv display kappa and
lambda light chain shuffle libraries and were transformed into electrocompe- tent TG-1
cells resulting in 1E6-to-1E7 transformants. The phagemid particles were rescued
by standard approach utilizing VCSM13 helper phage and phagemid particles were
purified by peg-precipitation. Phagemid preps were panned from 1:1 mixed lambda
and kappa libraries for H5VN04 (protein sciences (Meriden, CT) by adding 5E12 of
phagemid particles. Clone 48.1 was also successfully expressed as scFv-Fc with F10’s
light chain using the pcDNA3.4 vector which was transfected into 293T cells using
standard polyethylenimine approach.

MSD assay for bulk phagemids. MSD 384-well high bind plate coated overnight
with 25 ng H1CA0709, 25 ng H3PE09 (H3 A/Perth/16/2009, IRR FR-472), 25 ng
H5VN04 (H5 A/Vietnam/1203/2004, IRR FR-39), and 25 ng human PDL1 (irrelevant
control protein), were washed 1 time with PBS and blocked for 1 h at 37 °C with 2%
BSA/PBS. After blocking, peg precipitated bulk phagemid libraries from first round
of selection were diluted in 2% milk PBST (1E13 phagemid particles/mL) were added
to the wells and plates were incubated at 37 °C for 1 hr. Plates were washed with
PBST three times, then sulfo-tagged anti M13 diluted to in 2% milk PBST was added
and the plate was incubated for 1 hr at 37 °C and washed again as above. Read buffer
was added and plates were read on an MSD Sector Imager.

Binding kinetic assays. Binding kinetics of 48.1-scFv-Fc was performed using
Octet RED (Fortebio, USA) with anti-human Fc sensors. Kinetic cycle consisted of:
1) Equilibrium—sensors were dipped in wells containing kinetic buffer (0.02%/tween,
0.1%/BSA, PBS) for 60 sec. 2) Loading—sensors were dipped in wells containing
supernatant of cells transfected with 48.1 (Supplementary Fig. 5c) or 0.05μg/ml
of purified 48.1 scFv for 300 sec (Supplementary Fig. 5d). 3) Baseline—sensors
were dipped into wells containing kinetic buffer for 180 sec. 4) Association—sensors
were dipped into wells containing 10μg/ml HA proteins H1CA0709, H2JPN57 (H2
A/Japan/305/1957, IRR FR-700), H5VN04 (protein sciences), H3E09 and H7N3 (H7
A/Netherlands/219/2003, IRR FR-71) (Supplementary Fig. 5c) or serial dilutions
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of H2JPN57 (Supplementary Fig. 5d) for 300 sec. 5) Dissociation—sensors were
dipped into wells containing kinetic buffer for 300 sec (Supplementary Fig. 5c) or
1200 sec (Supplementary Fig. 5d). Association rate (Kon) dissociation rate (kdis)
and equilibrium dissociation (KD) constants were calculated using 1:1 fitting model
as provided by the Fortebio Data analysis software.

Statistical analysis. Overall comparisons between the F/F, F/L, and L/L genotype
classes were performed by using the Kruskal-Wallis test and subsequent pairwise
comparisons were conducted by applying Dunn’s pro- cedure to control the overall
Type I error rate. Cuzick’s trend test was used to detect the trend over F/F, F/L,
and L/L genotype classes by assigning scores 0, 1, 2 to the three groups; moreover,
Spearman’s correlation coefficient was used to summarize the association. Statistical
analyses were performed by using Prism 6 (Graphpad Software, Inc.) and R software
(www.r-project.org).
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2.5 Reading convergence of phenotypes

The mechanisms through which successful immunotherapy induces possible deletion,
replacement, or reprogramming of T cells are unknown. By evaluating the expression
of T-cell– related genes, and using appropriate multivariate statistical approaches, our
data show that successful immunotherapy can induce previously unidentified CD4+
T-cell subtypes during treatment that could help to predict an “immune-tolerant”
clinical phenotype identified after cessation of treatment. The ability to use “anergic”
transcriptional phenotypes in single T cells to predict successful “immune tolerance”
induction in the clinic setting, as suggested by our findings, could lead to trans-
formative impacts in the field of immunotherapy.

Allergen immunotherapy can desensitize even subjects with poten- tially lethal
allergies, but the changes induced in T cells that underpin successful immunother-
apy remain poorly understood. In a cohort of peanut-allergic participants, we used
allergen-specific T-cell sorting and single-cell gene expression to trace the transcrip-
tional “road- map” of individual CD4+ T cells throughout immunotherapy. We found
that successful immunotherapy induces allergen-specific CD4+ T cells to expand and
shift toward an “anergic” Th2 T-cell phe- notype largely absent in both pretreatment
participants and healthy controls. These findings show that sustained success, even
after im- munotherapy is withdrawn, is associated with the induction, expan- sion,
and maintenance of immunotherapy-specific memory and naive T-cell phenotypes as
early as 3 mo into immunotherapy. These results suggest an approach for immune
monitoring participants undergoing immunotherapy to predict the success of future
treatment and could have implications for immunotherapy targets in other diseases
like cancer, autoimmune disease, and transplantation.
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2.5.1 Introduction

Allergen immunotherapy (IT) is a process in which small amounts of allergen are
given over time to the allergic indi- vidual until they can safely tolerate high amounts
of allergen with no signs of clinical symptoms (1–9). In the regimen of oral IT
for peanut-allergic patients (identified by an allergic reaction during a standardized
blinded food challenge to peanut), small amounts of peanut flour protein are ingested
and escalated to a servings-worth of peanut protein (4 g of peanut protein) over
a period of 2–3 y (6-7). Most patients require continuous frequent (e.g., daily) ex-
posure to such therapy for beneficial clinical outcomes. Mecha- nistic studies of oral IT
to food allergens, although limited to date, show that plasma markers such as IgE and
IgG4 immunoglobulins, skin test markers, component testing, and basophil activation
tests are only weakly predictive of long-term clinical success (10–16). T cells are
critical upstream regulators of allergic sensitization that are required to help B cells to
synthesize IgE/IgG4 immunoglob- ulins, which then can activate or inhibit basophils
and mast cells (10–17). Moreover, successful IT is associated with the develop- ment of
regulatory T cells (Tregs) that are thought to dampen allergic reactivity to offending
allergens (7). We therefore focused on finding T-cell markers of immune tolerance
that could be de- tected early in the peripheral blood during IT. CD4+ T cells can
be relatively long-lived (compared with plasma proteins and ba- sophils) and changes
detected early in populations of T cells could perhaps predict longer-lasting successful
IT. For example, in one of the first studies in peanut allergen IT to withdraw therapy
for more than 10 wk, we previously showed that despite negative skin tests to peanut,
and high IgG4/low specific IgE levels to peanut, and decreased basophil reactivity to
the allergen, some patients who withdrew from therapy for 3–6 mo were still reactive
upon rechallenge with peanut (7). However, that study was limited be- cause of
uncertainty whether the T cells monitored were peanut specific. Furthermore, many
other T-cell markers which could play a role in immune tolerance (18) were not
analyzed (7).

Therefore, in the current study, we focused our research on peanut-specific T cells
by using tetramer technology, and we performed multiplex transcriptional profiling
on single CD4+ T cells. We hypothesized that allergic individuals have a complex
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set of antigen-specific and nonspecific CD4+ T lymphocytes, including allergic, non-
allergic, anergic, and regulatory subtypes that undergo induction and/or transitions
during IT. In addition, we posit that there may be certain subsets of CD4+ T lym-
phocytes that could predict more permanent vs. transient vs. refractory outcomes in
IT. To test this hypothesis, we chose a model of antigen-specific oral IT for peanut
allergens, and studied periph- eral blood samples from the peanut-allergic and con-
trol partic- ipants in a small, phase 1 IT clinical study (7), while excluding poten-
tially confounding variables, such as simultaneous exposure to multiple antigens and
use of concomitant immunosuppressive agents. To enable the recovery of compara-
ble allergen-specific T-cell populations, we limited the analyses to those participants
whose specific HLA haplotypes matched available allergen-specific HLA-dextramer
sorting reagents. Allergen-specific T cells were collected at four time points during
the first 18 mo of IT (Fig. 1). In accordance with a previously published protocol
(7), par- ticipants who had no signs of clinical reactivity on a standardized food chal-
lenge (i.e., to 4 g of peanut protein) at 24 mo were withdrawn from peanut IT for
an additional 3 mo, and tested for any signs of allergic reactivity at 27 mo with the
same standardized food challenge. Participants were defined functionally as either
“immune tolerant” (i.e., no allergic reaction with the food chal- lenge at 27 mo and
thus possibly representing a more permanent clinical outcome), “desensitized” (i.e.,
any allergic reaction with the food challenge at 27 mo and thus possibly representing
a more transient clinical outcome), or “refractory” (i.e., daily allergic symptoms to
less than 300 mg peanut protein for at least 3 mo). Importantly, immunophenotyping
of samples from these partici- pants was done by blinded laboratory staff and were
conducted before clinical outcomes of the participants had been determined, therefore
permitting us to determine, once the study was com- pleted, whether specific CD4+
T-cell subtypes could serve as possible predictors of immune tolerance.

Prior transcriptional profiling studies of lymphocytes have been based on analyses
of bulk cellular populations, making it impossible to discern the cell-fate pathways
and clonal re- latedness of individual T cells or even clusters of T cells of a common
phenotype (7, 19, 20). By contrast, functional pheno- typing a single-cell level allows
one to discern and quantify in- dividual cell phenotypes among complex mixtures of



CHAPTER 2. READING SPECIFICITY WITH CONVERGENCE ANALYSIS241

T cells. We sorted dextramer+ and dextramer− CD4+ T cells for single-cell gene-
expression profiling (21) to investigate their ontogeny in vivo. Transcript profiling
was limited to 22 markers using Flu- idigm Biomark technology (22). Biological
controls were obtained to compare healthy controls vs. subjects with peanut allergy
at pretreatment, healthy controls vs. patients undergoing IT treat- ment, patients
at pretreatment vs. during IT treatment, and dextramer+ vs. dextramer− CD4+ T
cells (Figs. 2 and 3). We first performed univariate analysis comparing gene profiles
of the sorted CD4+ cells, which demonstrated significance (P < 0.00057, Table 1) for
many individual immune markers such as IL-13, CD25, IL-17A, IL-4, and ITGα4β7
between comparison groups. Interestingly, during IT some markers (CD28, CD27)
seemed to “normalize” to healthy control levels but others, such as CCR7, CD25, and
forkhead box P3 (FOXP3), remained significantly different (P < 0.00057, Table 1).

We next performed multivariate analysis of multiple immune markers simulta-
neously to detect possible novel CD4+ T lymphocyte subtypes. Phenotype clus-
tering of single-cell gene-expression profiles obtained over the course of IT re-
vealed distinct phe- notypic clusters of CD4+ T cells, with marker combinations
characteristic of Th2 “allergic” (IL4+/IL13+), “nonallergic” (IFN-γ+), “regulatory”
(FOXP3+/CD25+/IL10+), and “anergic” (CD28-/CD38-/IFN-γ/IL4-/IL13-/IL10-)
CD4+ T-cell subsets (Figs. 4 and 5). In summary, our data show, for the first time
to our knowledge, that during the course of IT, antigen-specific CD4+ T cells of
diverse T-cell receptor (TCR) clonal origin expanded in frequency, and transitioned
from allergic and regulatory to anergic and nonallergic phenotypes, changes that were
associated with decreased allergic symptoms and the de- velopment of operationally
defined immune tolerance.

2.5.2 Results

CD4+ T-cell Transcriptional Profiling. We performed transcriptional profiling of in-
dividual dextramer+ and dextramer− CD4+ T lym- phocytes throughout the course
of IT in vivo, using a regimen of peanut oral IT to test our hypothesis. IT was
given to peanut- allergic participants, who had no other known allergies, under a
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published protocol (7), and peripheral blood was collected from these participants at
different time points before treatment (pretreatment time points) and during IT at 3
mo (IT-1), 6–7 mo (IT-2), 9–10 mo (IT-3), and 11–18 mo (IT-4) (Fig. 1). One IT-3
blood draw was performed at 9 mo and the other was performed at 10 mo, whereas
one IT-4 blood draw was performed at 11 mo and the other at 18 mo. Participants
from whom blood was drawn pretreatment are the same individuals from whom blood
was drawn during IT. CD4+ lymphocytes from each participant were labeled with
dextramers specific for the peanut-derived an- tigen Ara h 2 23 (Fig. 1), the most
widely recognized peanut antigen among allergic individuals (23) and dextramer+ and
dextramer− CD4+ T cells were sorted separately into single-cell wells, followed by
profiling of genes expressed in T cells like CD69, Ki67, CD28, CD38, CD27, CD127,
IL-4, IL-13, IFN-γ, ITGα4β7, FOXP3, and IL-10 and others (Table S1) to generate
heat maps and determine immunophenotyping of CD4+ T-cell subtypes (Fig. S1)
(24). t tests of individual gene expression for dextramer+ CD4+ T cells between
healthy controls vs. pretreatment (all pretreatment time points), healthy controls vs.
IT treatment (all IT time points), pretreatment vs. IT treatment, and dextramer+ vs.
dextramer− CD4+ T cells, identified several shared significant markers (P < 0.00057)
across two or more comparisons, particularly CD28, IL-10, FOXP3, IL-17a, ITGα4β7,
IL-13, CCR7, CCR8, and CD25 (Table 1). The most frequent statistically significant
changes (P < 0.00057) were detected in the pretreatment vs. IT treatment compari-
son. In addition, there were several markers that were statistically different between
dextramer+ and dextramer− CD4+ T cells (Table 1). Notably, the elbow method
for gap statistics performed on all data (including all healthy, pretreatment, and IT
cells) identified seven clusters of CD4+ T cells with distinct gene- expression patterns
(Fig. 2A). The elbow method for gap statistics looks at the percentage of variance
explained as a function of the number of clusters in a data set, seeking to choose a
number of clusters so that adding more clusters does not significantly im- prove the
modeling of the data (25). Each of the seven clusters identified had a particular “phe-
notype” assigned using the ex- pression level, or absence, of specific transcripts (Fig.
2 B and C, Table 2, and Fig. S2). Within most clusters, there were allergen- positive
CD4+ T lymphocytes and, to a lesser extent, negatively sorted (dextramer−) cells
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(which represent a cell population that is over 90% nonspecific because these cells do
not have a TCR cognate for the peanut peptide-MHC used in the staining reagent)
(26) (Fig. 2B). Comparison of the dextramer+ vs. dextramer− composition of each
cluster by t tests showed statistically signif- icant (P < 0.01) different proportions
of antigen-specific CD4+ T cells in each cluster, except cluster 7 (Fig. 2B). Clus-
ter 1, IFNγ- expressing cluster 2, and nonallergic cluster 3 were primarily composed
of dextramer− or “antigen-nonspecific” cells. The al- lergic cluster 4 and regulatory
cluster 5 consisted exclusively of dextramer+ or “antigen-specific” cells, whereas an-
ergic memory cluster 6 was primarily composed of dextramer+, antigen-specific cells.
IL-10 expressing cluster 7 exhibited a roughly equal mixture of antigen specific and
antigen nonspecific cells (Fig. 2B).

Dextramer+ cells are strongly enriched for allergy-associated phenotypes, demon-
strating the specificity of the dextramer reagents used (Fig. 2B). Nonspecific bind-
ing of dextramer reagents would assume to sample randomly from antigen-specific
and antigen- nonspecific T cells, and therefore to resemble the phenotypic distri-
bution of the background population and not to enrich spe- cifically for allergy-
related phenotypes. However, the phenotypic characterization of the dextramer+
cells is consistent with what is currently assumed regarding the phenotypes of
allergen-specific T cells, including being greatly enriched IL4+/IL13+ cells as well
as FOXP3+/IL10+/CD25+ cells compared with dextramer-cell types (Fig. 2B).

Differential Cluster Gene Expression. Gene-expression profiling al- lowed the phe-
notypic categorization of particular CD4+ T-cell clusters, including cluster 5, which
exhibited increased IL-10, CD25, and FOXP3 expression, features associated with
Tregs (27, 28), cluster 4, with increased IL-4 and IL-13 and low CD27, features linked
to allergic Th2 cells (2), cluster 6, with low CD28 and Ki-67, features linked to anergic
T cells (29), cluster 3, with high CD27 and low IL-4 and IL-13 expression, features
linked to nonallergic cells (2), and cluster 2, with increased IFN-γ, a feature linked to
Th1 cells (30) (Fig. 2 B and C, Table 2, and Fig. S2). Interestingly, only the anergic
cluster 6 had a memory phenotype, exhibiting low CD45RA expression (Fig. 2 B and
C, Table 2, and Fig. S2).
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Figure 2.28: Allergen-specific CD4+ T cells are collected before and throughout IT
treatment and analyzed for gene expression at the single-cell level. Schematic of the
overall oral IT study and the time-point analysis. Allergen- specific CD4+ T cells were
sorted from peripheral blood monocytes from HLA-DR4+ and HLA-DR15+ peanut-
allergic participants by HLA-matched Ara h 2-MHC dextramer reagents on FACS
into individual wells, followed by transcriptional profiling of a targeted phenotypic
marker panel by Fluidigm Biomark.
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Figure 2.29: CD4+ T cells form clusters with distinct gene expression, with allergen-
specific cells preferentially occupying IL4+/IL13+/CD69+ cluster 4 and FOXP3+/
IL10+/CD25+ cluster 5. (A) Gap statistics graph il- lustrating the elbow method
for determining the number of k-means clusters that best represents the variance
observed in single-cell gene-expression data. Seven clusters were chosen. (B) Fraction
of dextramer+ and dextramer− CD4+ T cells which belong to each cluster, and a
heat map profile of relative gene ex- pression for each cluster. *P < 0.0073, ns = not
sig- nificant (χ2 tests with Bonferroni-corrected P-value cutoff for multiple testing).
(C) Interquartile ranges of relative gene expression for each of the seven clusters.
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We next used principal components analysis (PCA) to globally visualize gene
expression of single CD4+ T cells. PCA allows for data visualization by reducing
the dimensionality of the data by deriving principal components (PCs) that account
for the varia- tion in the data. Plotting the individual cells along the first 2–3 PCs
showed a clear separation of distinct CD4+ T-cell clusters, including separation and
clustering of allergic cluster 4, regula- tory cluster 5, and anergic memory cluster 6
(Fig. 3 A and B). Plotting along PC2 and PC3 continued to show distinct separa-
tion of CD4+ T-cell clusters, despite accounting for a smaller percentage of the data’s
variance than PC1 and PC2 (Fig. 3B).

IT Changes Cluster Proportion. Because previous studies showed that IT induces
phenotypic changes in bulk T cells (31), we vi- sualized the changing composition of all
seven clusters in anti- gen-specific CD4+ T cells from individual participants during
the course of IT. Compared with healthy controls, IT participants had significantly
increased frequencies of antigen-specific CD4+ T cells over the duration of treatment
(P < 0.01) (Fig. 4A). In Fig. 4, it appears that whereas healthy individuals have
a distribution of phenotypes in their allergen-specific CD4+ T cells that are similar
to allergic patients, it is the number of these cells that is signifi- cantly different at
some time points during IT (Fig. 4A). The al- lergic individuals have less cluster
4 (IL4+/IL13+) cells at baseline, but more cluster 1 (also IL4+/IL13+) cells than
healthy controls.

Antigen-specific CD4+ T-cell clusters were recognized that were associated with
IT vs. pretreatment (Fig. 4B). At IT-1 (3 mo into IT), compared with pretreatment,
there was an increase in CD4+ T cells in the allergic cluster 4 and anergic memory
cluster 6, and a decrease in CD4+ T cells in regulatory cluster 5 (Fig. 4B). As IT
progressed, the anergic memory cluster 6 markedly in- creased, which was associated
with a decrease in allergic cluster 4, beginning at IT-2 (6–7 mo into IT), and a
reduction of allergy symptoms (Fig. 4B). Interestingly, at IT-2 there was an increase
in nonallergic cluster 3 and a maintenance of IL-10-expressing cluster 7. Importantly,
over time, the anergic memory cluster 6 increased at later IT time points (IT 3 and
4) compared with earlier IT time points (pretreatment, IT-1, and IT-2) (Fig. 4B).
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Further, CD4+ T cells in regulatory cluster 5 decreased as IT progressed, and were
undetectable at IT-4 (at 11–18 mo into IT) compared with pretreatment.

Antigen nonspecific cells did not exhibit significant changes in cluster distribution
during IT, indicating that IT induced changes predominately among antigen-specific
CD4+ T cells (Fig. S3A). When observing the distribution of antigen-specific CD4+
T cells in an individual participant, the relative contribution of anergic memory cluster
6 continued to increase as IT progressed (Fig. S3B). Peanut-allergic participants at
pretreatment and healthy controls maintained an equal distribution of cells across the
different clusters over time, although some nonstatistically sig- nificant (P > 0.05)
fluctuations in clusters were observed (Fig. S3 C and D).

Importantly, we juxtaposed the aggregated clinical symptoms of the participants
undergoing IT with the same time points in which immune monitoring occurred (Fig.
4C). As a participant ingests the food allergen as part of their IT regimen, we found
that allergic symptoms such as skin rash, abdominal pain, and respiratory symptoms
decreased in frequency over the time course of IT. This decrease in allergic reaction
frequency over time in IT is associated with the concomitant increase in the anergic
memory CD4 antigen-specific immunophenotype (Fig. 4 B and C).

Furthermore, other immune markers were examined in these same participants,
including skin tests, basophil activation tests, and levels of IgG4 and IgE antibodies.
Tests in healthy controls did not show significant activation of their basophils upon
stim- ulation with peanut compared with media (less than 3% differ- ence in percent-
age of CD63+ cells for all patients), nor did healthy controls have high levels of IgE
specific to peanut (<0.35 kUA/L for all individuals) or IgG4 specific to peanut (<0.14
mgA/L for all individuals). Although there were differences in basophil activation,
IgE levels, skin tests, and IgG4 levels among allergic individuals, we found that in the
small group of subjects analyzed, none of these markers were specifically associated
with immune- tolerant vs. desensitized vs. refractory clinical phenotypes (Fig. S4).
Importantly, changes in certain T-cell phenotypes occurred before changes in levels
of IgE or IgG4, or in results of basophil activation (Fig. S5).

Distinct Clustering Linked to Tolerance. We next tested whether the changes
in phenotypes of antigen-specific CD4+ T cells could be used to predict individual
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Figure 2.30: Antigen-specific CD4+ T cells form seven cluster phenotypes with dis-
tinct gene expression. PCA representation of variations in cell pheno- types, plotting
cells along (A) PC1 and PC2; (B) PC1, PC2, and PC3. The cells of all participants
at all time points are colored according to the CD4+ T-cell clusters to which they
were assigned using k-means. Variance accounted for by each PC: PC1 = 32.8%, PC2
= 15.8%, PC3 = 8.83%, PC4 = 6.34%.
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Figure 2.31: Cluster 6 T-cell receptor nonresponsive (CD28-/CD38-) noninterleukin
secreting (IL13-/IL4-/IL10-/IL5-/IFNγ-) antigen-specific CD4+ T cells expand and
allergy symptoms diminish over the course of IT. (A) Interquartile ranges for ppm
of antigen-specific CD4+ T cells from pooled healthy (n = 7), pre- treatment (n =
5), IT-1 (n = 5), IT-2 (n = 5), IT-3 (n = 2), and IT-4 (n = 2) participants. *P <
0.01, ns = not significant (t tests comparing each time point to healthy controls with
Bonferroni-corrected p-value cutoff for mul- tiple testing). (B) The fractional propor-
tion of dextramer+ CD4+ T cells in each phenotype cluster from all participants at
each IT time point IT-1 (n = 5), IT-2 (n = 5), IT-3 (n = 2), and IT-4 participants
(n = 2), pretreatment (n = 5), and healthy controls (n = 7). (C) Percentage of doses
resulting in allergy symptoms observed within 2 h of daily peanut ingestion within
each IT time frame drawing from all IT participants.
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clinical outcomes following IT. To do this, we visualized transitions in CD4+ T-cell
phenotypes during the course of IT among individual participants for whom we later
determined clinical phenotypes of refractory, immune tol- erant, or “desensitized.”
PCA permitted us to detect distinct T-cell clusters over time during IT, with distinct
individual gene- expression patterns for T cells in each cluster at each IT time point
(Fig. 5 A and B and Table 1). At pretreatment, there was a diversity of clusters repre-
sented for all participants. Interestingly, in both the refractory and immune-tolerant
patients, there were no allergic cells at pretreatment but at IT-1 there was a signifi-
cant transition toward allergic cluster 4 cells for the refractory clinical phenotype with
an indistinct scattering of cells across several clusters as IT progressed (Fig. 5 A and
B). Whereas cells remained partly scattered across clusters in the desensitized clinical
phenotype during IT, there was some transition toward nonallergic and anergic mem-
ory clusters as IT progressed (Fig. 5B). In contrast, for the immune-tolerant clinical
phenotype, cells transitioned distinctly to nonallergic cluster 3 and anergic memory
cluster 6 during IT (Fig. 5B).

A comparison of levels of each biomarker per cluster demon- strated significant
differences (P < 0.00057) in the pretreatment vs. IT groups and a shift over time to-
ward the anergic memory cluster (Table 1). The phenotypic shift distance, a measure
of variation in all markers for each cell from one IT time point to the next, revealed
that immune-tolerant and desensitized clinical phenotypes had statistically significant
(P < 0.001) reduced vari- ance in the later stages of IT (Fig. 5C). The refractory
clinical phenotype, however, exhibited greater phenotypic shifting throughout IT (P
< 0.001) (Fig. 5C). Overall, antigen-specific CD4+ T cells in immune-tolerant and
desensitized individuals appeared to settle on anergic memory or nonallergic immuno-
phenotypes during IT, whereas those in the refractory clinical phenotype continued
to represent several different phenotypes.

CD4+ T-Cell TCR and Gene Expression. Because successful IT in- duced signifi-
cant increases in anergic memory and nonallergic CD4+ T-cell clusters, we sought to
define the characteristics of CD4+ T-cell clones in a representative immune-tolerant
clinical phenotype. We sequenced TCRs and determined additional gene expression
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Figure 2.32: Temporal expression of CD4+ T-cell clusters reveals individualized pat-
terns associated with clinical phenotypes. (A) Two-dimensional PCA of antigen-
specific CD4+ T cells from all healthy subjects (green), and all pre- treatment time
points (black), IT-1 (yellow), IT-2 (orange), IT-3 (pink), and IT-4 (red) time points
for IT participants. Variance accounted for by PCs: PC1 = 32.8%, PC2 = 15.8%.
(B) Representative phenotypic shifts across IT time points from one immune tol-
erant subject, one refractory subject, and one desensi- tized subject, displayed via
2D-PCA for antigen-specific CD4+ T cells from immune-tolerant, desensitized, or
refractory participants over the course of IT. Gray dots represent cells from other
participants. (C) Interquartile range of “phenotypic shift” distances for dextramer+
CD4+ T cells from individual participants between IT time points. The one immune-
tolerant subject, one refractory subject, and one desensitized subject are the same
individuals that appear in B. Higher shift values indicate greater average change in
CD4+ allergen-specific phenotype between time points. Phenotype shifts were for
months 0–18 during IT, whereas “desensitized/immune tolerant/refractory” status
was determined at month 27. *P < 0.001, ns = not significant (one-way ANOVAs).
The calculations were performed from every cell in one time point to every cell in the
next time point within an individual. The total number of cell–cell comparisons are
summarized in Table S2.
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in individual antigen-specific and nonspecific CD4+ T cells (21) from an immune-
tolerant participant at IT-2, when several of the phenotypic transitions began to
emerge (Figs. 4B and 5B). By doing this, we gained insight into the clonal TCR and
additional gene-expression changes linked to tolerance induction.

Both antigen-specific and nonspecific CD4+ T cells were ob- served to be poly-
clonal, indicating no particular TCR bias (Fig. 6). TGF-β1, which has been linked to
tolerance induction and Th2 inhibition, was expressed by several clones (Fig. 6) (32,
33). Runt-related transcription factor, RUNX1, which represses Th2 programming
(34), was expressed in multiple clones (Fig. 6). Interestingly, GATA-3, the transcrip-
tional regulator of Th2 de- velopment, was expressed in several antigen-nonspecific
clones, often in association with TGF-β1, and not IL-13, a Th2 cytokine (Fig. 6).
The Th1 cytokine, TNFα, was expressed by many clones, often concurrently with
TGF-β1, but not necessarily with T-BET, the transcriptional regulator of Th1 de-
velopment (Fig. 6). Ex- pression of TNFα is consistent with presence of Th1 cells;
however, it is difficult to draw definitive conclusions based on a limited number of
cells. Few other cytokine transcripts were expressed by the selected clones, includ-
ing limited expression of IFN-γ, IL-13, IL-12, and IL-21. The follicular helper T-cell
(Tfh) lineage commitment factor BCL-6, was expressed by some an- tigen-specific
clones, raising the possibility that Tfh may have a role in tolerance induction during
IT (Fig. 6). Additionally, one FOXP3-expressing clone was observed (Fig. 6). Al-
though all dextramer+ cells were unique, in 1,000 repeat random sub- samplings of
13 CDR3 sequences from 5´RACE-derived, naive TCR repertoire, four motifs (GLT,
PTG, LTD, and RVA) were found to be significantly elevated above expectation in
the dextramer+ set (P < 0.01). These four motifs occur in partially overlapping re-
gions in the middle of TCRb CDR3, shared across 4 of the 13 recovered dextramer+
single cells. Overall, during successful IT, it is possible to observe marked expression
of tolerogenic TGF-β1 and indistinct lineage commitment or cyto- kine expression by
CD4+ T cells.
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Figure 2.33: Single-cell TCR sequencing and gene expression during successful IT
demonstrates tolerogenic gene expression without defined lineage com- mitment. TCR
sequencing of CDR3 regions and Vβ, Vα, Jα, and Jβ use, and RT-PCR of transcript
expression, for individual sorted dextramer+ or dextramer− CD4+ T cells at IT-2
from one participant later determined to be immune tol- erant. Shaded boxes repre-
sent gene expression of FOXP3, GATA3, IFN-γ, IL-13, IL-12, IL-21, T-BET, TGF-β1,
TNFα, BCL-6, RUNX1, or RUNX3. Horizontal line sep- arates data from dextramer−
cells (above the line) and dextramer+ cells (below the line).
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2.5.3 Discussion

Our goal in this study was to identify mechanisms involved in IT by using single-cell
gene profiling, combined with multivariate statistical analyses. Quantifying single-cell
gene expression has applications across many biological fields (35–37). High-through-
put transcriptional profiling of single cells and computational modeling enabled us
to track, on an unprecedented level, the molecular details of CD4+ lymphocytes
during IT in vivo. We found evidence of both antigen-specific and -nonspecific
CD4+ lymphocytes belonging to seven different phenotypic clusters with distinct
gene-expression profiles. Many of our computational anal- yses of phenotypic transi-
tions were possible only with data derived from single cells. In particular, our data
showed significant distinct transitions in antigen-specific CD4+ T cells that were not
observed in antigen-nonspecific CD4+ T cells. Notably, shifts in T-cell populations
appeared before significant changes in basophil ac- tivation, IgE levels, or IgG4 lev-
els, and were more predictive than such tests of an individual participant’s clinical
outcome (Figs. 4 and 5 and Fig. S4). These findings demonstrate the potential im-
portance of monitoring T cells during IT and suggest that single-cell approaches may
be useful for future studies on the effects of IT and the immune monitoring of individ-
uals un- dergoing IT. Further, significant differences in CD28 and CD38 expression
between experimental groups suggest that it would be interesting in future studies to
monitor other cell types, such as B cells and natural killer cells, which express the
same markers as the T cells we monitored in our study.

Although Ara h 2 is only one among multiple clinically rele- vant peanut allergens,
it is of great significance that this single representative allergen allows for complex
insights into the cel- lular mechanisms of the allergic process. It is significant that
strong statistical statements and predictive observations can be made using Ara h 2
as a single representative allergen. It is possible that the population of dextramer−
cells could contain some CD4+ T cells specific against other peanut allergen peptides
displayed on the same or other HLA molecules. How- ever, given the frequency of
the known immunodominant peanut-specific cells (5–20 cells per million) (Fig. 4A),
even with 1,000 different peanut epitopes just as immunodominant as the one we
investigated, with each represented at 20 parts per million, we would expect less than
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1 in 50 T cells would be allergen-specific from the circulating CD4+T-cell repertoire,
and thus would not affect our statistical results in any meaningful way. Further, it
is worth noting that although cells were obtained from the pe- ripheral blood rather
than the gut, studies in celiac disease have indicated that several days after ingesting
bread, gliadin-specific T cells appear in the peripheral blood (38). Therefore, we
speculate that daily exposure to peanuts through oral IT may contribute, via egress
of peanut-specific T cells from the gut to the blood, to elevations in the frequencies
of peanut-specific T cells in the peripheral blood of patients during IT.

Although there was a relatively small sample size of participants in our study,
we were able to follow their single cells sequentially over time and therefore perform
detailed, multidimensional comparisons against a previous time point. To address
the small sample size, we conducted studies in many control settings (i.e., health
controls vs. allergic controls, pretreatment vs. treatment, negative-sorted vs. positive
tetramer-sorted cells) to best de- termine the biological significance of our findings.
Sequential single-cell gene-expression measurements in CD4+ T lymphocytes during
the course of IT identified unique sets of T-cell clusters that were significantly linked
to the immune-tolerant clinical pheno- type. As IT progressed, anergic memory and
nonallergic antigen- specific CD4+ T lymphocytes were significantly induced only in
the immune-tolerant individuals. A regulatory CD4+ T-lympho- cyte cluster was
also observed as having CD45RA expression. Perhaps there is meaningful variation
in the intermediate region of the CD45RA expression and further studies will be
done to characterize these potential regulatory populations. The regulatory cluster
expressed CD127, suggesting that it is likely an induced regulatory T-cell subset, not a
thymic-derived regulatory subset (3, 27, 39. At the same time points, the desensitized
clinical phenotype exhibited a greater dispersion of cells across the different clusters,
with only some transitions toward nonallergic and anergic memory clusters. Notably,
the desensitized subject was the only one of these three subjects to have allergic
cells pretreatment. This might be predictive of clinical outcome. In contrast, in the
refractory clinical phenotype, cells spread indistinctly across several different clusters
as IT progressed. Of interest is a shift in the refractory patient from no allergic cells at
pretreatment to a large number of allergic cells at IT-1 (correlating with the peak of
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Table 2.1: Ryan Hovde Glanville PNAS 2015 Table1.

allergic symptoms) be- fore transitioning toward anergic and nonallergic phenotypes
at later IT time points. This spike in allergic cells coinciding with IT-1, which was
not seen in either the immune-tolerant or desen- sitized patient, may be predictive
of the refractory clinical phe- notype. By using current single-cell sorting technology,
we were able to distinguish distinct anergic and nonallergic cellular phenotypes that
could not have been identified using traditional immunophenotyping methods (39).
Defining phenotypic transition patterns in antigen-specific and antigen-nonspecific
lymphocytes during successful IT might allow us to infer the timing of expression
changes in key genes associated with induction of tolerance.

We defined the anergic memory phenotype by the lack of co- stimulatory receptor
CD28 and the proliferation-associated anti- gen Ki-67, and low-to-absent expression
of the early activation marker CD69, indicating a nonproliferating, nonactivated phe-
notype with diminished CD28 signaling potential, which has been linked to anergic
CD4+ T cells (40). However, our current single- cell gene-expression study was
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technically limited by the number of markers that could be used for the comprehensive
detection of anergic cells. Using a more expansive panel of anergy markers (i.e., Cbl-
b, GRAIL, program-death-1, and cytotoxic T-lymphocyte- associate protein-4) (20,
41–45) may elucidate in greater detail the transitioning phenotypes of anergic cells
during IT.

Although the generation of long-lived memory lymphocytes would seem to be
an essential feature of IT, we observed several changes in the naive antigen-specific
and -nonspecific CD4+ T cells. Most importantly, the predominant anergic cluster
6 lymphocytes induced during IT had a memory phenotype and were increased sub-
stantially over all other clusters. Although there is background variability between
subjects at pretreatment time points, the expansion of the anergic cluster 6 can be
seen to be much larger than any background variation (Fig. 4) and was statistically
significant compared with background (P < 0.01). This may indicate that repeated
antigen treatments during the course of IT may be critical for anergy induction in
memory CD4+ T cells, and for the promotion of a tolerogenic environment that in-
hibits pathogenic CD4+ T-cell recruitment and aberrant re- sponses (43). Although
we do not usually think of anergic cells as a population that proliferates, there are
some plausible explanations of this observed phenomenon. A change in IL-2 produc-
tion could account for this expansion. Also, it is plausible that through the course of
IT other nonanergic cell types are activated and pro- liferate before becoming anergic.
These cells may then act upon subsequent allergen exposure, suppressing the allergic
response. It would be interesting in future studies to further elucidate the mechanism
of this observed expansion, and to define in greater detail the phenotype of these cells,
measuring the presence of cytokines (such as IL-2) and markers of effector memory
T cells (such as CD62L).

Our results also suggest that successful IT can induce poly- clonal antigen-specific
and -nonspecific CD4+ T cells, with in- distinct lineage commitment, possibly in-
dicating their functional plasticity and transitory phenotype. During successful IT,
several clones expressed TGF-β1, which has been linked to anergy and tolerance in-
duction during IT, typically by way of Tregs (31). Further, clones expressing GATA-3
also largely coexpressed TGF-β1, which inhibits GATA-3–driven Th2 differentiation
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Table 2.2: Ryan Hovde Glanville PNAS 2015 Table2.

(33). This may be another indication of transitory CD4+ T-cell phenotypes within
a successfully treated individual, with allergic Th2 cells undergoing transcriptional
reprogramming to tolerogenic TGF- β1-expressing cells. Additionally, several clones
expressing TNFα also coexpressed TGF-β1, again indicating functional plasticity and
transitory phenotypes of CD4+ T cells during IT.

The results of the TCR sequencing gives confidence that the cells we sequenced
are representative of a larger pool of antigen- specific T cells and do not display
only clones that were greatly expanded. Initially when performing our phenotype
analysis we did have some concerns that there might be large clonal ex- pansions
that would bias our analysis of T-cell phenotypes to- ward the most expanded T
cells. However, in our TCR sequencing analysis, we determined that the recovered
populations are quite diverse. This implies that the total number of allergen-specific
clones is considerably larger than the number of T cells that we characterized, and that
the single-cell phenotyping analysis per- formed was sampling phenotypes from almost
entirely non- redundant clones. Further, evidence of specific shared and over- lapping
CDR3 motifs could possibly indicate that a diverse population of clones converges
to recognize pMHC complexes with similar selected amino acid motifs. In future
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studies, this suggests that such motifs could be used to recognize allergen- specific T
cells from primary sequence (21). Although we only acquired TCR sequencing data
during treatment, it would be interesting in future studies to match TCR sequencing
data ob- tained during treatment to TCR sequencing data acquired before treatment
begins to answer important questions pertaining to clonal transformation during IT
treatment.

Studies of antigen-specific IT have implicated FOXP3-expressing Treg induction
in association with immune tolerance in allergy, diabetes, and multiple sclerosis (7,
46–49), and a subversion of Th2 or Th1 responses in allergy and diabetes, respectively
(47, 48, 50). However, we observed a reduction in allergic Th2 cells and a reduction in
antigen-specific regulatory cells in the peripheral blood over time during IT. Preferen-
tial deletion of antigen-spe- cific Th2 cells has previously been observed following IT
(1) and decreased Treg over time in IT has been reported (7, 15). Further repertoire
analysis of CD4+ T cells during IT may reveal the preferential deletion or reprogram-
ming of T cells based on fac- tors like functional avidity or structural TCR avidity.
Addition- ally, several IT studies, particularly for allergy, have identified changes in
antigen-specific IgE and IgG responses, regulatory B cells, and basophils associated
with tolerance induction (13, 17, 39, 46, 51).

In conclusion, our study is the first, to our knowledge, to show complex phenotypic
transitions in CD4+ T cells during IT. By analyzing the gene-expression patterns of
individual CD4+ lymphocytes, we were able to reconstruct the pathways of these cells
as they transitioned to “tolerant” or “nontolerant” states. This approach has yielded
previously unidentified insights into the po- tential mechanisms of tolerance induction
during oral IT. Although our study has used oral IT in food allergy as a model
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treatment, the mechanisms we have uncovered and the methods we have applied
could be relevant to other forms of IT and disease states associated with modulation
of the immune system, such as cancer, autoimmune diseases, and transplantation. The
data presented here provide important insights into the changes in gene expression
and T-cell phenotypes that may occur during successful IT.

2.5.4 Methods

Study Design. The study was designed to discern the changes in CD4+ T-cell phe-
notypes that underpin the induction of immune tolerance in oral IT. To this end,
we isolated CD4+ T cells from IT participants and healthy controls (individuals who
have no known allergies and have not taken drugs that are known to influence periph-
eral T-cell response) at predefined time points (Table 3), sorted individual T cells,
and performed single-cell gene-expression analyses and TCR sequencing and pheno-
typing on these isolated cells. The protocol for this study was reviewed and approved
by the Institutional Re- view Board (IRB) of Stanford University. Written informed
consent was obtained for all participants before entering the study.

Participants and IT. Participants with matching HLA types, HLA-DRB1*1501
and HLA-DRB4, compatible with peanut-derived Ara h 2 peptide dextramers from
a previous recent study (7), were enrolled in this pilot study. Double- blind, placebo-
controlled food challenges (DBPCFCs) occurred at screening and clinical reactivity
was determined. Clinical reactivity is defined as any sign of allergic reaction. The
oral IT protocol was conducted in a hospital setting with trained staff. Healthy con-
trols were proven to be nonallergic via serum IgE less than 0.35 kU/L and no clinical
symptoms consistent with atopy and no positive food challenges. Peanut allergy par-
ticipants were confirmed using DBPCFCs conducted under an IRB-approved protocol
at Stanford University School of Medicine. Par- ticipant demographics can be found
in Table 3. Further subject information, including eligibility criteria, and further IT
details, including food challenge dosing protocol, have been previously published (7).

Cell Preparation and Sorting. From each subject, 20–40 mL of blood was obtained
during the afternoon and placed on a rotator overnight before being processed in the
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morning the following day. Basophil activation assays were performed as previously
described (52). Specific IgE and IgG4 were measured (Stanford Clinical Laboratories).
CD4+ T cells were isolated using the Human CD4+ T-cell enrichment kit (StemCell
Technologies), according to the manufacturer’s protocol. CD4+ T cells were activated
with phorbol myristate acetate (PMA) at 20 ng/mL and Ionomycin at 1 μg/mL at
37 °C for 1.5 h to up-regulate cytokine expression. After washing twice, CD4+ T
cells were stained with PE-labeled Ara h 2 dextramers [DRB1*1501 and DRB4; Ara
h 2 (120-139, RQQEQQFKRELRNLPQQCGL)] (Immudex) at room temperature for
45 min. Cells were then stained with anti-CD3 V500, anti-CD4 APC-H7, anti-CD8
FITC, anti-CD14 FITC, anti-CD19 FITC (BD Biosciences), anti-CD45RA brilliant
violet 421 (BioLegend), anti-CD56 FITC, and anti-CD294 Alexa Fluor 647 (BD Bio-
sciences) for 20 min at 4 °C. Cells were washed and incubated with anti-PE magnetic
beads (Miltenyi Biotec), according to the manufacturer’s protocol, and a 1/20 frac-
tion was saved for analysis. The other fraction was passed through a magnetic column
(Miltenyi Biotec). The bound, PE-labeled cells were flushed and collected. Cells in
the bound fraction and the fraction not passed through the column were stained with
7-AAD (BD Biosciences) for 10 min before flow cytometry. Dextramer-stained T cells
were sorted as single cells into individual wells of a 96-well plate. Cells were stored
in reverse transcriptase reaction buffer at −80 °C until use. Flow cytometric data
were acquired on a BD Fluorescence Activated Cell Sorting (FACS) Aria (BD Biosci-
ences) and the data analyzed using FlowJo (FlowJo).

Fluidigm. This assay was performed by the Human Immune Monitoring Center
at Stanford University. For single sorted cells, RT-PCR was performed directly in a
96-well PCR plate (ABI) containing lysis buffer (Invitrogen) by using SuperScript III
One-Step RT-PCR System with PlatinumTaq (CellDirect kit, Invitrogen). PreAmp
was performed on a thermocycler using the TaqMan PreAmp Master Mix Kit (Invit-
rogen) added to cDNA and 0.2× pooled Taq- man assays. RT enzyme was inactivated
and the Taq polymerase reaction was started by bringing the sample to 95 °C for 2
min. The cDNA was pre- amplified for 18 cycles by denaturing at 95 °C for 15 s,
annealing at 60 °C for 4 min. The resulting cDNA product was diluted 1:2 with 1×
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TE buffer (Invi- trogen). Next, 2× Applied Biosystems Taqman Master Mix, Flu-
idigm Sample Loading Reagent, and preamplified cDNA were mixed and loaded into
the 48.48 Dynamic Array (Fluidigm) sample inlets, followed by loading 10× as- says
into the assay inlets. Manufacturer’s instructions for chip priming, pipetting, mixing,
and loading onto the BioMark system were followed. Real-time PCR was carried out
with the following conditions: 10 min at 95 °C, followed by 50 cycles of 15 s at 95
°C and 1 min at 60 °C. Data were analyzed using Fluidigm software. All reactions
were performed in duplicate or trip- licate, and Ct values were normalized to the 18S
positive control.

TCR Sequencing and Phenotyping. TCR sequencing and phenotypic analyses
were performed as previously described (21). Briefly, PCR sequence and gene- expres-
sion analysis from single cells were obtained by a series of nested PCRs for multiple
Vα, Vβ, Jα, Jβ, Cα, and Cβ regions and multiple genes, including FOXP3, GATA-3,
IFN-γ, IL-13, IL-12, IL-21, T-BET, TGF-β1, TNFα, BCL6, RUNX1, and RUNX3.
Bar-coding PCRs were used to track PCR products from individual cells that were
sequenced using the Illumina MiSeq platform (Illumina Inc.).

Initial Data Transformation. Initial Fluidigm output consists of marker expres-
sion levels ranging from 0 to 40, which represent the number of amplification cycles
necessary to obtain a threshold level of the marker. A score closer to 0 indicates a
greater expression level, and a score closer to 40 indicates a lesser expression level.
Any markers not expressed at a high enough level to be detected after 40 cycles receive
a score of N/A (nonapplicable). We trans- formed them by subtracting each score
from 40, so that higher transformed scores correspond to higher expression level. All
N/A values were set to 0.

Normalization. To control for interplate variance, we normalized using the ex-
pression of 18S, a housekeeping gene, to establish a baseline level of activity for each
plate and adjust accordingly. We found the median 18S expression of all of the cells
on each plate and then found the median of these 35 medians. An “activity level” for
each plate was calculated by dividing the median 18S expression of that plate by the
median-of-medians. Then, each marker ex- pression level for each cell on the plate
was divided by this activity level.
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Cluster Analysis. We started by using the gap statistic to compare within- to
between-cluster sums of squares for various numbers of clusters (25). After plot-
ting these and looking for an elbow, we divided the cells into seven clus- ters.
Before clustering, the data for each marker were centered by the overall median
and scaled by the range. Cells were then clustered using k means. To ensure
that all presenting phenotypes were represented and contributed to cluster des-
ignation, all cells (both dextramer+ and dextramer−) were included for cluster
analysis at all time points. All statistical analysis and graphs were performed us-
ing R. K-means clustering (53) was performed using the R pack- age “kmeans”
(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans. html). Heat
map visualization was performed using the R package “heatmap 2” (www.inside-
r.org/packages/cran/gplots/docs/heatmap.2). The agglomerative clustering method
used for dendrogram construction was complete-linkage clustering, using a Euclidean
metric. The clustering method passed to the clusGap function was kmeans, with k
ranging from 1 to 7.

PCA was performed using the single-cell gene-expression data to visualize the
relationship among the individual cells. PCA is an unsupervised method that gen-
erates a new set of unrelated variables (PCs) that represent the most variation in
the data set (54). PCA was run using the “prcomp” function in R (stat.ethz.ch/R-
manual/R-patched/library/stats/html/prcomp.html) to attribute the variance in the
data to a reduced set of variables (PCs). For 3D-PCA, we projected the high-
dimensional immunophenotype data onto the first three PCs and mapped each el-
ement into a 3D viewer using the R “pca3d” package (cran.r-project.org/web/pack-
ages/pca3d/index.html). For 2D-PCA we used the R package “ggplot2” (cran.r-
project.org/web/packages/ggplot2/index.html) and mapped each element.

Variance/cluster composition bar graphs were plotted using the R package “gg-
plot2.” The fractional cluster composition at each stage of IT was cal- culated as
the number of cells in that stage of IT that were statistically de- termined to sort
into each cluster (k-means) divided by the total number of cells, yielding a fraction
between 0 and 1.
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Phenotypic Shift Distance. Within each participant, we calculated the degree of
phenotypic shift of all observed CD4+ dextramer+ peanut-specific T cells between
progressive time points. Phenotypic shift is reported as the root- mean-square devi-
ation (RMSD) (55) of all phenotypic markers between each cell at an IT time point
to each cell observed at the following time point. All phenotypic shift distance calcu-
lations were performed in Perl (Version 3.20.1) (https://www.perl.org).

Statistics. To determine which markers were informative in determining the effect
of IT on individual T cells, we used t tests to compare: cells from healthy con-
trols against cells from pretreatment participants, cells from healthy controls against
cells from IT participants (all IT time points), cells from pre- treatment partici-
pants against cells from IT participants (all IT time points), and dextramer+ cells
vs. dextramer− cells. t tests were performed using R. Comparison of phenotypic
shift distances by one-way analysis of variance (ANOVA) was performed with Prism
software (GraphPad). Comparison of proportion of dextramer+ and proportion of
dextramer− cells belonging to each cluster was done using χ2 tests in Excel. Compari-
son of number of dextramer+ cells at each IT time point was performed in Excel using
t tests. Bonferroni-corrected P-value cutoffs were computed by setting a significance
level of α = 0.05 and dividing by the number of tests performed.
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Chapter 3

Heredity, Environment and Receptor

Convergence

With an established ability to identify clones in Chapter 1, and then identify conver-
gence groups of related clones that perform the same function in Chapter 2, it becomes
of considerable interest to establish whether polymorphim in human populations at
the V,D,J and C loci of the BCR and TCR repertoires could influence the formation
of clones and convergence groups. One example, the genotype-specific formation of
broadly neutralizing IGHV1-69 influenza stem binders, has been discussed in Chapter
2.4. Here we expand on that analysis into additional pathogens, additional resources
for characterization of allele polymorphism at these complex loci, and strategies for
integrating polymorphism data into functional response analysis and the search for
correlates of protection.

3.1 Introduction

Antibodies (Abs) produced by immunoglobulin (IG) genes are the most diverse pro-
teins expressed in humans. While part of this diversity is generated by recombination
during B-cell development and mutations during affinity maturation, the germ-line
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IG loci are also diverse across human populations and ethnicities. Recently, proof-of-
concept studies have demonstrated genotype– phenotype correlations between spe-
cific IG germ-line variants and the quality of Ab responses during vaccination and
disease. However, the functional consequences of IG genetic variation in Ab func-
tion and immunological outcomes remain underexplored. In this opinion article, we
outline interconnections between IG genomic diversity and Ab-expressed repertoires
and structure. We further propose a strategy for integrating IG genotyping with
functional Ab profiling data as a means to better predict and optimize humoral re-
sponses in genetically diverse human populations, with immediate implications for
personalized medicine.

3.1.1 The molecular basis for antibody diversity

Antibodies (Abs) have long been appreciated as key constituents of the adaptive im-
mune response. Their function is to enable selective recognition and mediate immune
responses to novel foreign antigens. This is accomplished through the somatic gener-
ation of vast repertoires of hundreds of millions of unique Ab receptors that can be
selected, matured, and ultimately participate in the formation of long-term memory
during B-cell development and activation. As a consequence of this diversity, even
after nearly a century of research, the complexity of the Ab response within and
between individuals is only beginning to be delineated at the molecular and genetic
levels.

Hundreds of variable (V) and dozens of diversity (D) and joining (J) immunoglob-
ulin (IG) germ-line gene segments across three primary loci in the human genome
comprise the necessary building blocks of the expressed Ab heavyand light-chain
repertoires [1]. Whereas the heavy chain is encoded by genes at the IG heavy-chain
locus (IGH), the light chain can be encoded by genes at either the IG kappa (IGK)
or IG lambda (IGL) chain loci [1]. The naïve Ab repertoire is formed by assembling
variants of these building blocks using a specialized V(D)J recombination process
that somatically joins various V, D, and J segments (or V and J at IGK and IGL).
The introduction and deletion of P and N nucleotides at V(D)J junctions and the
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Figure 3.1: Sources of antibody diversity. The germline IGH locus, consists of
tandemly arrayed IGH V, D, J, and constant (C) gene segments. For a subset of
these segments, multiple alleles are shown, representing population-level allelic di-
versity. During the initial formation of the naïve repertoire, single V, D and J gene
segments on one of two chromosomes in a given B cell are somatically recombined;
at each of these steps, P and N nucleotides are added at the D–J and V–D junctions
(’junctional diversity’), respectively. This process, known as V(D)J rearrangement,
is the basis for ‘combinatorial diversity’. Two identical heavy chains and two iden-
tical light chains are ultimately paired through disulfide bonds to form a functional
Ab; thus, additional diversity in the expressed Ab repertoire comes from ‘heavyand
light-chain pairing’. Following Ag stimulation, ‘somatic hypermutations’ introduce
additional variation in the variable domain of the Ab (vertical purple bars), with the
aim of improving binding affinity. Mutations that arise via SHM can occur across all
FRs and CDRs, but these are most prevalent in CDRs.
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pairing of different heavy and light chains dramatically increase diversity (Figure 1)
[2]. Considering these processes alone, a given baseline or primary naïve repertoire
can theoretically sample from different Abs [3]. The extraordinary diversity of the
naïve repertoire ensures that it will likely contain a naïve Ab with at least weak initial
binding against a vast array of antigens.

Even so, this impressive baseline diversity can be subsequently augmented when a
B cell encounters and is stimulated by an antigen to undergo somatic hypermutation
(SHM; Figure 1), resulting in lineages of tens of thousands of clonally derived affinity
maturation variants of the initial Ab. Specifically, SHM introduces somatic mutations
throughout the variable portion of the Ab, including targeted hotspots residing within
the antigen-contacting hypervariable complementarity-determining regions (CDRs).
This process ultimately increases the affinity and specificity of the Ab for binding the
target epitope, facilitating a highly focused antigen-specific response.

While the prevailing paradigm for investigating B-cell and Ab-mediated responses
has placed emphasis on the importance of the unique molecular mechanisms cited
earlier in the generation of key functional Abs, there is a growing appreciation for
the fact that IG genes are highly variable at the germ-line level, exhibiting extreme
allelic polymorphism and gene copy number variation (CNV) between individuals and
across populations [4–9]. Recent studies have begun to highlight that, in addition to
diversity introduced during V(D)J recombination, heavyand lightchain pairing, and
SHM, IG germ-line variation (e.g., allelic variation; Figure 1) plays a vital part in
determining the development of the naïve repertoire, with downstream impacts on
signatures observed in the memory compartment, and the capacity of an individual
to mount an Ab response to specific epitopes [10–16].

3.1.2 IgH haplotype diversity in human populations

Recent genomic sequencing indicates that IG loci, specifically IGH, may be among the
most polymorphic in the human genome [17]. Across IGH, IGK, and IGL, there are
currently >420 alleles cataloged in the ImMunoGeneTics information system database
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(IMGT) [18–21] that have been described from germ-line DNA in the human pop-
ulation, with an enrichment of nonsynonymous variants (Table 1). Although the
validity of some alleles in IMGT has been called into question [22], the number of
polymorphic alleles continues to grow [11,23,24], especially as IG gene sequencing is
conducted in increasing numbers of non-Caucasian samples [7,9,25]. A recent study
conducted in 28 indigenous South Africans identified 122 non-IMGT IGHV alleles
[9]. In addition to IG allelic variation and single nucleotide polymorphisms (SNPs),
CNVs, including large deletions, insertions, and duplications ($8–75 Kb in length),
are also prevalent in IG regions (Table 1). Using IGH as an example, up to 29 of
the 58 functional/open reading frame (ORF) IGHV genes may vary in genomic copy
number CNVs of IGH D (diversity) and constant (C) region genes are also known
[11,12,29]. Until recently, primarily due to technical difficulties associated with the
complex genomic architecture of the IG loci, none of the known CNVs in IGHV had
been sequenced at nucleotide resolution [7]; many likely remain undescribed at the
genomic level.

The high prevalence of IG allelic and locus structural diversity translates into
extreme levels of inter-individual haplotype variation [4–7]. For example, recent com-
parisons of the two available completed assemblies for the IGHV gene region ($1 Mb
in length) revealed that two human chromosomes can vary by >100 Kb of sequence,
with >2,800 SNPs, and CNVs of 10 IGHV functional/ORF genes [7,17]. In population
sequencing experiments, extreme examples of heterozygosity have been noted, with
evidence of some individuals carrying more than one allele at every IGHV coding gene
[9]. Supporting earlier genetic mapping data [4,5], more recent analysis of inferred
haplotypes from Ab repertoire data surveyed in nine individuals revealed that all 18
haplotypes characterized were unique [6]. Furthermore, at the population level, of the
few SNPs and CNVs screened within IGH, allele and genotype frequencies have been
shown to vary considerably between ethnic backgrounds [7–9,15], with evidence of
selection [7]. Despite the evidence for elevated germ-line diversity, genomic resources
for IG loci continue to lag behind other regions of the genome [26]. Because of this,
the comprehensive and accurate genotyping of IG polymorphisms remains a signifi-
cant challenge [26,30], and as a result, the full extent of IG polymorphism and the
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implications for human health are yet to be uncovered [26]. However, it is plausible
that population-level diversity in the IG loci, particularly in IGH, will rival that of
other complex immune gene families, such as the human leukocyte antigen (HLA)
and killer cell IG-like receptor (KIR) genes. These genes are also characterized by
extreme haplotype diversity, due to CNV and coding region variation [31,32]; HLA
genes, for example, have thousands of known alleles [31]. In contrast to IG genes,
HLA and KIR have been studied more extensively across human populations, and
have demonstrated critical roles in disease [31,32].

3.1.3 Germline influence on the expressed antibody repertoire

Our limited knowledge of IG population diversity has hindered our ability to com-
prehensively test for direct connections between IG germ-line polymorphisms, vari-
ation in the repertoire generated after recombination, amino acid variation in the
Ab produced, and ultimately Ab function. Advances in high-throughput sequenc-
ing technology now enable extensive characterization of the expressed Ab repertoire
[33–35], creating opportunities for beginning to investigate the heritability of the Ab
response at fine-scale resolution. Applications of these methods, collectively referred
to as repertoire sequencing (‘IgSeq’ or ‘RepSeq’), have already led to a wealth of new
discoveries in a range of contexts [33,36]. These include general observations that key
features of the Ab repertoire show extensive variability between healthy individuals
[10,11,13,14,37], and a limited overlap of B-cell receptor clones between individuals,
even monozygotic (MZ) twins [10,13,14]. However, RepSeq studies have also revealed
that these inter-individual differences are not necessarily random, but likely have a
strong underlying genetic component, providing initial support for the importance of
germ-line IG polymorphism in determining the naïve and Ag-stimulated Ab reper-
toire. For example, several recent studies have revealed that V, D, and J gene usage
in the naïve repertoire is much more highly correlated between MZ twins than be-
tween unrelated individuals [10,13,14], and that IG gene usage patterns are consistent
across time points within a given individual [38]. A role for genetic factors can be
seen for other repertoire features in twins as well, including the degree of SHM [13],
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Figure 3.2: Impacts of IG Germ-Line Polymorphism on Ab Repertoire/Structural Di-
versity. (A) Hypothetical examples of associations between IG gene region CNV (V
gene 1 insertion/deletion) and SNP (noncoding regulatory variant, A/C) genotypes
and V gene usage frequencies in the expressed Ab repertoire. (B) Violin plot showing
nonsynonymous polymorphism rates in CDR positions with high (>0.6; ‘high’, blue)
or low (<0.25; ‘low’, red) frequency of contact with antigen. The Y axis records, for
each CDR-H1 and CDR-H2 position, the number of IMGT IGHV genes that have
alleles with nonsynonymous polymorphisms at that position. The positional prob-
ability of antigen contact was calculated for each CDR position as the percentage
of 150 crystal structures of antibody–antigen complexes from the protein database
(PDB) where any atom of that residue is within 5 Å of any antigen atom. Allelic
variation is enriched in antigencontact sites, in that the number of IGHV genes with
alleles containing nonsynonymous polymorphisms is greater for high contact probabil-
ity positions. (C) Genotype frequency differences between five human ethnic groups
[Africans (AFR); East Asians (EAS); South Asians (SAS); Central/South American
(AMR); and Europeans (EUR)], published by the 1000 Genomes Project [80]*, at two
SNPs in IGHV1-69 that have been shown to encode functional residues critical for
neutralizing Abs against the influenza HA stem (F54 and L54 amino acid-associated
alleles; SNP rs55891010; left panel), and ‘NEAT2’ domain of Staphylococcus aureus
(R50 and G50 alleles; SNP rs11845244; right panel). In the left panel, the F allele en-
codes the functional critical phenylalanine residue, and in the right panel, the primary
glycine residue is encoded by the G allele. Interestingly, in both cases, the frequency
of individuals lacking alleles encoding the critical residues varies among populations,
with the L/L and R/R genotypes showing the lowest frequencies in Africans, and
the highest frequencies in South Asians. rs55891010 and rs11845244 are in linkage
disequilibrium, and thus R50 and L54 amino acids (and likewise, G50 and F54) tend
to co-occur in alleles of IGHV1-69. This explains similarities in genotype frequency
estimates between the two SNPs in each population.
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and the distribution of CDR-H3 length and clone convergence [10,13,14]. Intrigu-
ingly, although existing data suggest that features in the memory compartment are
more stochastic, likely reflective of random recruitment and transient proliferation,
certain genes and repertoire features exhibit predictable patterns even in memory B
cells [10,13,14,39].

Studies of repertoire heritability are consistent with a number of examples for
which germ-line IG polymorphisms have been explicitly linked to features in the ex-
pressed Ab repertoire [12,15,40–42] (see Figure IA in Box 1 for hypothetical examples
of IG genotype effects on the repertoire). Sasso et al. [40] reported the first direct
connection to IG genotype, reporting that CNV of IGHV1-69 was tightly correlated
with its relative usage in tonsillar B cells. Our own work has also demonstrated this
relationship, but uncovered associations for IGHV1-69 coding and potentially non-
coding polymorphism as well as CNV [15]. Inferred deletions of IGHD genes have
also been shown to associate with variation in D–J pairing frequencies, demonstrating
that germ-line effects on the repertoire extend beyond V genes [12]. An interesting
aspect of IGH CNVs is that, in addition to observed effects of these variants on the
genes within the CNV event, they also can impact the usage of genes elsewhere in
the locus [12,15]. For example, we recently observed apparent long-range effects of
IGHV1-69 CNV in the naïve and memory repertoire, in that individuals with fewer
IGHV1-69 germ-line copies and reduced usage showed consistently higher usage of
IGHV genes over 200 Kb away [15]. The mechanisms underlying the observed effects
of CNVs in human IG loci remain technically difficult to assess experimentally, but it
has been speculated that these large changes in locus architecture (i.e., deletions and
insertions) could alter regulatory systems related to V(D)J recombination [12,15], for
example, by modifying the chromatin landscape, cis-regulatory elements and tran-
scription factor binding, and/or the physical locations of the IG V, D, and J genes.
All of these factors are known to be key determinants of IG gene accessibility and
usage frequencies in mice [43,44].

A role for noncoding polymorphisms is also strongly supported by early work
conducted in the human IGK region which directly showed that a variant associ-
ated with Haemophilus influenzae infection susceptibility in the recombination signal
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sequence (RSS) of IGKV2-29 significantly decreased gene rearrangement frequency
[42]. RSSs, which are critical for the recruitment of RAG1/2 proteins, have also
been demonstrated to impact IGHV gene usage in mice [43,44]. Moreover, exten-
sive work in the murine IG gene loci has uncovered important roles for other key
cis-regulatory sequences and transcription factors as well [45,46]. Such analyses have
not yet been comprehensively conducted in humans, and as a result, our knowledge
of the IG regulatory elements involved in the formation of the expressed Ab reper-
toire is restricted to canonical RSS, promoter, enhancer elements, and class switch
regions. However, even for these well-known noncoding regulatory regions, limited
data on human population-level variation exist, and thus the broader consequences of
polymorphism in these elements on Ab repertoire variability have not been explored.

Although direct links between repertoire variability and human IG CNVs and non-
coding polymorphisms remain limited to the few examples discussed above, additional
evidence from expressed Ab repertoire studies in unrelated individuals also highlights
the clear potential for these variants to have pervasive impacts on Ab repertoire fea-
tures, particularly gene usage in the naïve compartment. Most demonstrable is the
fact that many of the genes with the most variability in naïve repertoire usage across
individuals are also known to be in CNV, including examples of the complete ab-
sence of genes in the expressed Ab repertoires of some donors [6,10–12]. In addition,
allele-specific usage in the naïve Ab repertoires of individuals heterozygous at a given
IGHV gene has been demonstrated, also clearly suggesting a role for noncoding vari-
ation and CNV [11]. Moreover, although effects of germ-line IG polymorphism may
be most evident on a per gene basis, it is worth noting that findings from MZ twins
demonstrated that certain CDR-H3 features are highly heritable [13,14]. This indi-
cates that even strong genetically determined biases on individual V, D, and J gene
usage [and thus their nonrandom combination during V(D)J rearrangement] could
also be directly linked to variation observed within CDR-H3. This is an important
point given that CDR-H3 variation has classically been considered independent of the
germ line [13,14].

In addition to effects of IG polymorphism on gene usage, functional CDR variants
can also be directly encoded in the genome. For example, across the $267 coding
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alleles cataloged in IMGT for functional and ORF IGHV genes, 60% of the 382
polymorphisms are nonsynonymous (Table 1), including sites located in CDR-H1
and CDR-H2 with predicted relevance to Ab functional residue diversity (see Figure
IB in Box 1). Although the CDR-H3 loop, formed at the V (D)J junction, is the most
diverse region of an Ab and is a principal determinant of specificity [47,48], there is
a growing appreciation for the importance of residues outside of CDR-H3 in antigen
recognition and binding [15,49–51]. For example, recent analyses have shown that the
median length of CDR-H2, which is solely encoded by germ-line V gene sequence, is
substantially longer than that of CDR-H3, and typically forms the same number of
interactions with antigen [52]. Specifically, analyses of antigen-binding region (ABRs;
which roughly correspond to CDRs, but differ slightly in their boundaries) have shown
that Abs contain a median of six, six, and four contact residues in the heavy-chain
CDR-H3, H2, and H1 ABR regions, respectively. In addition, the overall percentage of
energetically important Ag-binding residues within each ABR follows the same rank
order, with $31%, 23%, and 14% for H3, H2, and H1, respectively. Similar trends were
noted for light-chain ABRs as well [52]. In addition, considering that many known
nonsynonymous sites reside outside of CDRs (Table 1), it is worth highlighting the
fact that there are also examples demonstrating indirect effects of framework region
variants on Ag binding [53,54].

3.1.4 Shared antibody signatures across individuals

A critical question is whether the germ-line effects on the repertoire outlined above
can also partially account for inter-individual variation of the Ab-mediated response
in disease and clinical phenotypes. The initial observation from RepSeq studies that
essentially no Ab clones were shared among individuals, including MZ twins, posed a
challenge to comparative Ab repertoire analysis: how could correlates of protection
be identified in the Ab repertoire if every individual was responding with different
Abs? However, an answer began to emerge with the observation that in multiple
settings, including viral and bacterial infection, different individuals have been shown
to respond to a given antigen with Abs that share convergent amino acid signatures



CHAPTER 3. HEREDITY, ENVIRONMENT AND RECEPTOR CONVERGENCE 280

Table 3.1: Watson Glanville Trends in Immunology 2017 Table1.

[13,49,54–58]. These convergent Abs are often encoded by common V genes or sets
of V genes, and specific amino acid residues in their CDRs enable them to converge
upon a common binding solution against a shared antigen. Critically, in some cases
evaluated, convergent signatures include amino acid residues that are directly encoded
in the germ line. The occurrence of such convergent Ab responses highlights the po-
tential for tracking common immune responses across individuals, and understanding
the role of genetic factors, even when each individual creates unique Abs. Impor-
tantly, the implications of this line of thinking could be broad, as IG gene biases have
been observed in contexts other than infection, including autoimmunity and cancer
[59,60]. Moreover, IG gene biases may also extend to usage patterns of D and J genes,
light-chain genes, and heavyand light-chain V gene pairing frequencies [56,61,62].

3.1.5 Polymorphism enriched in antigen contact sites

There are now many instances for which functional contributions of biased IG genes
have been traced back to specific germ-line-encoded residues, including sites that are
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polymorphic in the human population [15,16,50,53–55,63–65]. These examples illumi-
nate a direct role of the IG germ line in disease-associated Ab responses. In the case
of stem-directed broadly neutralizing Abs (BnAbs) against influenza hemagglutinin
(HA), the most prevalent Abs use the heavy-chain gene IGHV1-69 [66–70]. These
IGHV1-69 BnAbs recognize an overlapping epitope of group 1 influenza A viruses
and only amino acids from IGHV make contact with HA. Importantly, of the 14
known alleles at IGHV1-69, only those encoding a critical phenylalanine at position 54
(F54) within CDR-H2 have a major role in shaping the BnAbs response [16,15,55,71].
Although IGHV1-69 F54-encoding alleles are dominant, there is a growing list of addi-
tional HA-directed BnAbs that also show IG germ-line biases [51,56,72–74], including
those also known to be polymorphic with respect to coding variants and CNVs.

Interestingly, there are additional instances of biased IGHV1-69 allele usage in
other disease contexts, with both overlapping and contrasting patterns to that ob-
served for influenza. For example, F54 alleles are predominantly observed in IGHV1-
69-expressing B cells associated with chronic lymphoid leukemia (CLL), whereas al-
leles encoding a leucine (L54) at this position are primarily used by non-neutralizing
anti-gp41 Abs in HIV-1 [63,64]. Moreover, it has been shown that IGHV1-69 F54
alleles, in comparison with L54 alleles, have lower usage in the memory B-cell pool
[10,15]. This observation may be similar to trends noted for IGHV4-34, which is also
significantly underrepresented in the memory compartment of healthy individuals
[10], and presumes to reflect a selective pressure against autoreactive Abs [75,76].

Other polymorphic positions in the framework regions of IGHV1-69, in conjunc-
tion with CDRH2 54, have also recently been shown to influence Ab binding of Mid-
dle East respiratory syndrome coronavirus (MERS-CoV) [53] and the Staphylococcus
aureus NEAr iron transporter 2 (NEAT2) domain [54]. In the example of NEAT2,
neutralizing Abs encoded by IGHV1-69 alleles carrying an arginine (R) at position
50 in place of glycine (G) showed significantly reduced NEAT2 binding [54]. Inter-
estingly, based on publicly available data, the frequencies of critical alleles within
polymorphic positions of IGHV1-69 vary across populations (see Figure IC in Box 1).
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Figure 3.3: In the proposed paradigm, a population cohort is partitioned into sub-
groups based on functional genotypes/haplotypes that are directly associated with
subgroup-specific signatures in the expressed repertoire and other relevant pheno-
types (e.g., Ab titer; clinical outcome) associated with the Ab response to a given
antigen/epitope. This partitioning can be used to inform tailored clinical care and
treatment (e.g., vaccination regime). Ab, antibody.

3.1.6 Relating genotype, repertoire & outcomes

Considering the aforementioned evidence, we argue that the antigen-specific Ab reper-
toire is likely influenced by the host genotype. Although the genetic bases for reper-
toire and germ-line gene biases have not been comprehensively investigated, several
recent studies provide a strategy for systematically integrating data on IG polymor-
phism and Ab responses at the population and molecular levels to provide unique
insight into Ab signatures associated with disease.

We have begun to explore this idea in detail at the IGHV1-69 locus in the context
of influenza vaccination [15]. Providing strong proof-of-concept, by initially focusing
on observed IGHV1-69 allelic usage bias against a critical broadly neutralizing epi-
tope, we genotyped the IGHV1-69 F54/L54 allele and copy number frequencies in a
cohort of 85 H5N1 vaccines, including 18 individuals with accompanying Ab reper-
toire data [15]. Drawing directly on aspects of repertoire heritability reviewed above,
we found robust connections between these polymorphisms and repertoire gene usage
in both the unmutated IgM (naïve) and IgG memory repertoires, with IGHV1-69
germ-line gene usage increasing with the number of copies of F54 alleles. In addition
to usage frequencies, IGHV1-69 genotype also associated with IGHV1-69 B-cell ex-
pansion, SHM, and Ig class switching. It is important to note that these genotype
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effects extended to levels of circulating anti-HA stem BnAbs postvaccination, with in-
dividuals carrying only germline-encoded CDR-H2 L54 alleles having lower IGHV1-69
BnAbs. Furthermore, with direct repertoire sequencing, we were able to specifically
demonstrate that only carriers of the IGHV169 F54 alleles expressed convergent anti-
BnAb signatures. These results are bolstered by similar observations recently made
by two other groups that also carried out IGHV1-69 F54/ L54 allele genotyping in
their cohorts [16,55]. Altogether, these data demonstrate that genetically determined
baseline differences in the Ab repertoire can set the stage for disease-related responses.

A crucial aspect of this story (which is expected to emerge in other cases as well)
is that the frequency of IGHV1-69 F54 alleles and CNV varies considerably across
populations [7,15]. Specifically, the number of individuals that would be predicted
to lack the capacity to generate effective IGHV1-69 BnAbs was much higher in some
populations. However, we and others have shown that individuals lacking IGHV1-69
F54 alleles likely utilize other germ-line genes in place of IGHV1-69 [51,55]. This find-
ing in particular both highlights the complexity of the Ab response and demonstrates
that the integration of genotyping information can help provide a more nuanced in-
terpretation of the signatures discovered in the expressed repertoire. Moreover, it
suggests that efforts should be made to study these complex responses in larger and
more diverse cohorts, including individuals from presently understudied populations.

Building on findings in these initial studies [15,16,55], we propose a framework for
integrating genotypic information into future studies of the Ab response in wellness
and disease (Figure 2, Key Figure). The general strategy is as follows: (i) identify IG
gene biases observed in a diseaserelated or epitope-specific response; (ii) characterize
this response at the population level by performing comprehensive genotyping of
coding, noncoding, and gene copy number variants at and around the locus of interest
(and others if there is rationale); (iii) perform repertoire sequencing and analysis of the
response in all relevant B-cell subsets to identify all Ab convergence groups with allele
bias; and (iv) evaluate genotype–phenotype linkages of the functional Ab response
and specific Ab convergence groups.
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3.1.7 Conclusing remarks

We see a growing body of evidence to support the link between IG polymorphism
and phenotype that may have important clinical applications (see Outstanding Ques-
tions). The most obvious of these correlations include potential effects of CNV and
SNPs in non-translated and translated IG gene regions on expressed repertoire vari-
ability in naïve and memory B cell subsets. Some of these polymorphisms could be
expected to more broadly impact variation in protective Ab responses [77] and qual-
ity of the memory B-cell pool. We anticipate that IG polymorphism will contribute
to differences in expression of common (public) and unique (private) antibody sig-
natures that are associated with protective responses in disease and in response to
vaccination. We propose a model for the future in which cataloging these public sig-
natures for biased gene use, V(D)J associations, SHMs, and heavy-light chain pairing
in the context of IG germ-line variation should begin to provide us with information
to advance our understanding of the immunogenetic potential of an individual’s base-
line naïve repertoire (Figure 2), particularly when more complete data sets of biased
Ab signatures to specific epitopes become available. Based on existing genetic data,
it is probable that similar IG haplotypes will associate with overlapping signatures
in baseline repertoire profiles, even if not to the degree of repertoire similarity ob-
served in MZ twins. This IG polymorphism, as we and others have begun to show,
may further influence the evolution of antigen-experienced B cells and plasma cells,
where other genetic polymorphisms in the IG loci and environmental exposures come
into play in continuing to shape affinity, epitope specificity, and fate. In addition,
class-switched memory B-cell compartments will vary over time [37], and could be
quantitated in the type and size of clonotypes with both public and private signatures
against immunodominant epitopes9.

Together, this knowledge should pave the way to using molecular and genetic
signatures for mapping an individual’s exposure history, current wellness state, and
immune potential against future antigenic threats. For example, characterization of
genotypes that specifically lead to common BnAb signatures in the repertoire should
be useful for tailoring vaccines to responsive genotypes with the goal of achieving 100%
‘universal vaccine’ responsiveness at the population level (Figure 2). In addition, such
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information could lead to advances in the use of anti-idiotypic antibody and chimeric
antigen receptor T-cell therapies that are directed against germ-line gene expressing
B-cell clonotypes that are directly involved in autoimmune disease and hematologic
malignancies [78,79]. We face tall hurdles to moving this paradigm forward, the
greatest being the completion of a comprehensive catalogue of human IG haplotype
variation [26]. However, with ever expanding advances in immunologic and genomic
technologies, we believe that such integrative approaches are within our reach, and
have the potential to transform our understanding of Ab-mediated immune responses
in the clinical and research arenas.
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3.2 Quantifying heritability in the adaptive receptor

repertoires

This study, produced in 2011 the year before I began the PhD program at Stanford,
remains one of my favorites ever produced. Simple and elegant, it emerged as a
consequence of a dare - could we, when blinded of the identity of sets of PBMC samples
from pairs of monozygotic twins, distinguish A) repertoires from twins vs those of
unrelated subjects, B) sample replicates within twin pairs, and C) identify the MS-
affected subject in the discordant twin pair in the study. The results of this analysis
provided strong guidance for my understanding of the natural antibody repertoire.

A diverse antibody repertoire is essential for an effective adaptive immune response
to novel molecular surfaces. Although past studies have observed common patterns of
V-segment use, as well as variation in V-segment use between individuals, the relative
contributions to variance from genetics, disease, age, and environment have remained
unclear. Using high-throughput sequence analysis of monozygotic twins, we show
that variation in naive V H and D H segment use is strongly determined by an indi-
vidual’s germline genetic background. The inherited segment-use profiles are resilient
to differential environmental exposure, disease processes, and chronic lymphocyte de-
pletion therapy. Signatures of the inherited profiles were observed in class switched
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germ-line use of each individual. However, despite heritable segment use, the rear-
ranged complementarity-determining region-H3 repertoires remained highly specific
to the individual. As it has been previously demonstrated that certain V-segments
exhibit biased representation in autoimmunity, lymphoma, and viral infection, we
anticipate our fi ndings may provide a unique mechanism for stratifying individual
risk pro fi les in speci fi c diseases.

3.2.1 Introduction

Specific biases in the antibody repertoire have been found in many diseases, from viral
infections to cancers to autoimmune disorders (1 – 15). Although it is possible that
heritable variation in the composition of the antibody repertoire could alter inherent
risk to speci fi c diseases, the diversity of the antibody repertoire has hindered direct
characterization of heritable in fl uences.

Early twin studies provided some evidence of genetic variation affecting reactive
titers from the antibody repertoire. Multiple studies observed both total Ig and
antigen-speci fi c titers to be more correlated in monozygotic twins than dizygotic
twins or unrelated individuals (16 – 18). In some cases of monozygotic twins dis-
cordant for autoimmune diseases, the healthy twin often shared high autoantibody
reactive titers with their affected twin (16, 19, 20).

Early sequencing studies were able to identify some systematic biases in the anti-
body repertoire with limited sampling depth. The fi rst sequencing studies to charac-
terize V(D)J diversi fi cation mechanisms identi fi ed the gene segment recombination
process, but also implied a repertoire too diverse to exhaustively interrogate by tra-
ditional sequencing technologies (21). Complete characterization of V-segment loci
established ∼ 50 V H ,40V κ , and 30 V λ segments in an individual, with a num-
ber of allelic variants for the majority of segments (22 – 24). Evaluation of use
across individuals revealed biased V-gene representation that preceded selection (25
– 27). Quantitative PCR of V-gene families showed family use largely stable over
time, with fl uctuations in use correlated to antigen-speci fi c responses (28). In the
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T-cell receptor (TCR) repertoire, TCRB-V use was more highly correlated in healthy
monozygotic twins than unrelated individuals (29, 30).

Recent developments in high-throughput sequencing of antibody diversity have
enabled direct analysis of repertoires from entire organisms (31, 32). Such high-
throughput repertoire studies have suggested both stochastic and heritable mecha-
nisms involved in generating the antibody repertoire (32 – 34). A highthroughput
study of 12 human samples identi fi ed variation in Vsegment use between individuals
(33). Preferential use of some alleles suggested a potential heritable mechanism for
repertoire variation, but they represented minor contributors to the total repertoire.
Without longitudinal studies, it has remained unclear whether the observed variation
was because of genetics, differences in antigen exposure, or natural fl uctuation of
V-gene use in the repertoire over time. Longitudinal studies of repertoire develop-
ment in the zebra fi sh model organism have established strong correlations in the
early repertoire that grew more divergent in adult fi sh (34). The authors attributed
variation in the adult fi sh to stochastic clonal expansion from a common underlying
repertoire (34).

To clarify the impact of heritable mechanisms governing B-cell receptor diversity,
we performed a blinded high-throughput sequencing evaluation of antibody reper-
toire diversity in two middle-aged monozygotic twin pairs, one pair discordant for
multiple sclerosis (MS) and the affected twin chronically treated with lymphocyte-
depleting and immunomodulatory agents. By controlling for genetic variation, the
selected samples provide a means of addressing the impact of genetics on repertoire
formation and environment on repertoire drift. In the discordant twin pair, chronic
immunotherapy in the MS-affected sibling provides a unique opportunity to evaluate
heritable in fl uences of repertoire re-establishment after chemical ablation.

3.2.2 Results

Peripheral blood mononuclear cells (PBMCs) were obtained from both siblings in
two monozygotic twin pairs (twin group A: twin A1 and twin A2; twin group B: twin
B1 and twin B2). Each PBMC sample was divided into biological replicates before
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cell lysis and RNA extraction. B-cell repertoires of the twin pairs were ampli fi ed
separately using single isotype-speci fi c3 ´ primers and the 5 ´ SMARTer RACE
universal primer mix ( Table S1 ). All samples were assigned multiplex identi fi
er (MID) barcodes and sequenced with 454 GS FLX high-throughput technology.
Titanium long-read chemistry was used to observe the somatic hypermutation (SHM)
load of entire variable domains in a single read.

A total of 3,316,360 reads were obtained across all twin samples ( Table S2 ).
When fi ltered for reads containing an identi fi able V-segment, J-segment, and
complementarity-determining region (CDR) 3 in a single frame, 153,500 ± 13,400
heavy-chain sequences and 101,400 ± 16,200 light-chain sequences were obtained per
individual. To remove chimeric sequences, ambiguous segment assignments, and other
common sources of sequencing error (35), the VDJFasta probabilistic classi fi er was
used to fi lter the sequence output (36). After fi ltering, 143,800 ± 13,000 heavy-chain
and 99,800 ± 16,200 light-chain sequences were available for each of the four twins (
Table S2 ).

Both B-cell proliferation and PCR can cause reads from a single V(D)J rear-
rangement event to appear multiple times in a sequence dataset. To avoid bias from
overcounting dominant clones, all sequences bearing the same V-gene, J-gene, CDR3
length and CDR3 amino acid composition differing by no more than two amino acids
were clustered and treated as individual, nonredundant sequences. After clustering,
each twin retained 15,500 ± 4,600 unique heavy-chain clones and 10,600 ± 2,400
unique light-chain clones. This target depth was determined to produce highly repro-
ducible (Pearson ’ s r > 0.99) V-gene pro fi les in simulated sampling experiments (
Fig. S1 ).

Sequence analysis approximated interrogation of the naive compartment without
cell sorting by considering only sequences that were IgM + and SHM low [contain
less than 5-bp mutations over at least 270 V-gene bases from the closest reference In-
ternational Immunogenetics (IMGT) V-gene germ line] ( Fig. S2). The optimal SHM
cutoff between naive and memory repertoire was determined by analyzing 379,637
CD27 − and 483,940 CD27 + antibody sequences obtained from FACS-sorted B-cells
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Figure 3.4: Heritable variation observed in naive VH-gene use profiles. (A) Hierar-
chical clustering of naive VH-gene profiles from twins and biological replicates. Ge-
netically distinct groups can be distinguished with high confidence by approximately
unbiased multiscale bootstrapping (AU 100%). (B) VH-gene use profile correlation
between biological replicates (r = 0.994), monozygotic twins (r = 0.989, r = 0.972),
and unrelated individuals (r = 0.870). (C) Significant heritable differences in V-gene
profiles between twin pairs observed for germ lines IGHV1-2, IGHV1-3, IGHV1-8,
IGHV4-b, IGHV5-a, and IGHV7-4–1 (*P < 4.7e-04).
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from three healthy controls ( Fig. S2 ). This “ in silico cell sorting ” procedure re-
sulted in 9,700 ± 5,600 unique IgM + SHM low heavychain clones and 4,800 ± 1,200
unique SHM low light-chain clones per twin.

In a blinded evaluation, naive V H -gene pro fi les could correctly discriminate
genetically distinct twin pair samples with high con fi dence [100% Approximately
Unbiased (AU) bootstrap probability of correct classi fi cation (37, 38)], and correctly
assign biological replicates to individuals within twin pairs (92% AU for Twin group
A and 100% for Twin group B) (Fig. 1 A ).

V-gene use differed between unrelated individuals but not within twins (Fig. 1 B
). Although V-gene pro fi les from unrelated donors exhibited commonalities in the
characteristic human germ-line V H use (Pearson ’ s correlation coef fi cient r = 0.87),
intratwin group A (A1 vs. A2) and intratwin group B (B1 vs. B2) assessments were
nearly as correlated as biological replicates from the same individual ( r = 0.989, r =
0.972, and r = 0.994, respectively) (Fig. 1 B ). The effect did not appear to be because
of an abnormality of V-gene use in one of the twin pairs: additional comparisons
between the V-gene pro fi les of the three healthy controls (female Hispanic age
47, female Asian age 44, female Caucasian age 54) provided an average Pearson ’ s
correlation coef fi cient between unrelated individuals as 0.768 ± 0.093.

Although all V H segments showed highly correlated use between twins, a sub-
stantial proportion (6/31) were observed to have signi fi cantly different use ( P <
8.4e-4) compared with the unrelated individuals from the other twin pair (Fig. 1 C ).
Nested ANOVA attributed the proportion of variance to intertwin variability greater
than 95% for all signi fi cant V H segments, compared with an average of 31.7%
(SD 35.3%) for nonsigni fi cant V H segments. The twin pairs were observed to use
different alleles for three of the differentially used segment loci, IGHV12, IGHV1-3,
and IGHV7-4-1 ( Table S3 ). Differential utilization of IGHV4-b and IGHV5-a was
characterized by complete absence of the segment in one twin pair but not the other.
Twins could also be distinguished by heritable variation in their V κ and V λ pro fi
les, although the effects were less pronounced than that observed in the heavy chain
( Fig. S3 ). Of 45 evaluated, 4 light chain segments showed signi fi cantly different
use between twins: IGKV1-NL1, IGKV1-27, IGKV2-28, and IGLV3-10 ( Fig. S3 ).
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Figure 3.5: Limits of heritable variation observed in naive V(D)J recombination reper-
toire. (A) Significant heritable differences in D-gene profiles between twin pairs ob-
served for nine D-segments (*P < 5.3e-4). (B) Correlation coefficients for D-segment
use within biological replicates, within twin pairs, and between twin pairs. Reported
with 95% confidence intervals. (C) V-D observed recombination frequencies are highly
correlated to expected frequencies (r = 0.95 ± 1.7). (D) D-J observed recombination
frequencies are highly correlated to expected frequencies (0.97 ± 0.01).
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Signi fi cant heritable variation was also observed in the Dsegment repertoire (Fig.
2 A ). Although not all D-segments can be reliably classi fi ed ( Table S4 ), the subset
that was classi fi ed showed high correlations within twins ( r = 0.993 twin pair A,
r = 0.991 twin pair B), and substantial differences between twins ( r = 0.882) (Fig.
2 B ). Of D-segments that could be classi fi ed and represented, at least 0.5% of the
repertoire of any individual, 9 of 19 showed signi fi cantly different use between twin
pairs ( P < 5.3e-4) (Fig. 2 A ). In contrast, J-segments did not show signi fi cant
differences in use across twin pairs ( Fig. S3 ).

Although the V-gene and D-gene use exhibited heritable variation between the
twin pairs, the V(D)J recombination process does not show preferential linkage, in-
stead occurring largely in proportion to underlying abundance of the segments. A
comparison of observed vs. expected V-D and D-J recombination frequencies showed
high correlations (V-D r = 0.95 ± 1.7; D-J r = 0.97 ± 0.01) and few examples of
biased selectivity in the recombination process (Fig. 2 C and D ), in agreement with
previous reports (32).

During the blinded analysis, three individuals had evidence of SHM in 30 – 40% of
their IgM V-segments, but a single individual was observed to have a nearly complete
absence of V-gene mutations in their IgM repertoire (Fig. 3 A ). TCRB repertoire
sequencing for each of the four twins served as a control to con fi rm that the observed
somatic hypermutation rates in three of the four samples was well in excess of the
PCR and sequencing read error rate expected from the process (Fig. 3 A ). The fi
nding was further corroborated by FACS analysis, where CD20 + IgM + B-cells of
this individual were found to consist almost entirely of naive cells (97.5% CD27 − )
(Fig. 3 B ).

Unblinding of the samples revealed this to be the MS-affected and chronically
immunosuppressed patient twin B1. Age 57 at the time of sampling, twin B1 was
diagnosed with relapsing remitting MS at age 31 and had progressed to a secondary
progressive MS course. Since diagnosis, twin B1 had been treated with immunomod-
ulatory (IFN B1, glatiramer acetate) agents that may promote B regulatory response
(39) or alter the composition of B-repertoires (40), but also immunosuppressive agents
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Figure 3.6: Impact of chronic immunosuppressive therapy on twin B1. (A) SHM load
in variable domains of IgM repertoire. In healthy twins A1, A2, and B2, 30–40% of
unique clones contain >4 bp SHM. In treated twin B1, >97% of the IgM repertoire
appears naive. Of the sequences from the TCRB repertoire of each twin, 10,000 were
sequenced as a negative control for SHM detection. (B) Histograms of CD27+ cells
gated on IgM+/CD20+. Healthy twins A1, A2, and B2 have 70–72% CD27− cells,
but treated twin B1 has 97.5% CD27− cells.
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Figure 3.7: Unique V(D)J clone overlap between IgM and class-switched IgG and
IgA. Unique counts shown in upper diagonal, percent overlap [(A

⋂
B)/min(A,B)]

in the lower diagonal, and unique clones in sample along diagonal. In the upper
diagonal, counts for twins A are in green, for twins B are in orange. Log10 heatmap
colors sequence counts. Percentage of overlap in the bottom diagonal is dark gray if
over 1%, light gray if 0.1–1%, and white if less than 0.1%.

(mitoxantrone, methotrexate, mycophenolate, cyclophosphamide) that directly de-
plete the B-cell repertoire by inhibiting DNA synthesis. Twin B1 had been off any of
these medications for 10 mo at the time of sampling. Remarkably, although chronic
lymphocyte depletion therapy for twin B1 had caused a dramatic loss of somatically
hypermutated IgM cells (Fig. 3 A ), naive V-gene, D-gene, and J-gene use remained
highly correlated to her monozygotic sibling (Figs. 1 and 2, and Fig. S3 ). This
resiliency of the naive V-segment pro fi le to depletion suggests that naive V-segment
use is predetermined by hereditary in fl uences that precede repertoire formation.
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The highly diverse CDR-H3 is considered to be the key determinant of antigen
speci fi city (41). To assess whether heritable fi ve-gene and D-gene use also con-
tributes to convergent (CDRH3) generation, we analyzed the amino acid sequences
CDR-H3 in monozygotic twins. At the sampling depth obtained in this study, CDR-
H3 repertoires appear highly personal, sharing few common clones between individu-
als and bearing no more similarity to an identical twin than an unrelated individual.
No more than nine common clones were observed between individuals, but > 99.9%
of clones were unique to an individual (Fig. 4 A ). Within an individual, 2 – 8% of
clonally derived CDR-H3s are present in both IgM and classed switched repertoires
at the depth obtained in this study (Fig. 4 A ). Clonal variants were also found: in an
individual, 27% of CDR-H3 clones had a related clone that differed by less than three
amino acids ( Fig. S4 ). However, when comparing across samples from different
individuals, the next closest CDR-H3 differed by at least four residues ( Fig. S4 ).
Notably, CDR-H3 repertoires produced by identical twins neither produced identi-
cal CDR-H3 sequences nor produced CDR-H3 repertoires that were detectably more
similar in amino acid composition than that produced by an unrelated individual.

Both intratwin pairs share nearly identical naive V H -gene use but each had lived
apart and been exposed to different antigens. Antigenic exposure activates and ma-
tures B cells for improved binding to speci fi c antigens. This fi nding establishes a
repertoire of speci fi c antigen-experienced receptors that will respond rapidly to sec-
ondary antigenic challenge. To assess the balance between genetically predetermined
V-gene use pro fi les and antigenic pressure, we analyzed the rearranged Ig transcripts
from the antigen-experienced class-switched compartments.

In the three healthy twins (twin A1, A2, B2), class-switched Vgene use was signi
fi cantly correlated ( P < 0.0005) with their respective naive V-gene pro fi les, but
with far more variation than observed in the naive repertoire (Fig. 5). Even with
increased variation, the majority of segments appear at similar frequencies in class-
switched and naive repertoires, with 76 of 83 switched V-segments (91.6%) appearing
between 0.5 to 2-fold of naive use, and only 10 appearing at ratios signi fi cantly
different from expectation (IGHV1-69, IGHV1-8, IGKV1-8, IGKV1D-8, IGKV3-11,
IGKV4-1, IGLV2-5, IGLV2-23, IGLV3-16, IGLV3-19; single t test, null ratio = 1, P
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< 6.0e-04) (Fig. 5). These segment-speci fi c ratios were found in V H ,V κ ,andV λ ,
showed some isotype variation ( Fig. S5 ), and were similar across healthy twins A1,
A2, and B2. However, the affected twin B1 ’ s memory use (indicated by red circles)
differed substantially (Fig. 5).

3.2.3 Discussion

Through the sequence analysis of antibody repertoires in monozygotic twins, we are
able to distinguish a fi xed naive gene segment use, a derived stochastic memory, and a
highly diverse and personal CDR-H3 repertoire. The presence of heritable naive gene-
segment pro fi les provides an essential basis for the understanding of B-cell repertoire
genesis. We observe monozygotic twins to share nearly identical naive gene segment
use pro fi les. V H -gene and D H -gene segment pro fi les showed population variation,
differing between unrelated twin pairs. Environmental in fl uences, autoimmunity
(42), and lymphocyte depletion introduced almost no variation between the common
segment use pro fi les of a twin pair. These observations exclude the possibility that
naive V-gene and D-gene use is governed by environment or homeostasis, but rather
appears as a function of genetic origins.

We were able to discriminate between the naive pro fi le and the activated pro fi le
by sequence analysis. By fi ltering out noise from redundant clones and the af fi nity
matured repertoire, the underlying heritable naive repertoire became available for
inspection. Parallel analysis of the TCRB repertoire provided an important control
to distinguish the rate of sequencing error from the underlying somatic hypermutation
rate in our samples. The use of this in silico cell-sorting methodology will facilitate
rapid characterization of the naive repertoire without FACS for future large-scale
repertoire disease-association studies.

A fi xed heritable naive V-gene repertoire and a stochastically derived memory
repertoire complement observations made in previous studies. In the TCRB-V reper-
toire of monozygotic twins (30), correlations in healthy twins but not discordant twins
can be explained by a divergent memory response mixed with a common underlying
naive repertoire. In zebra fi sh (34), the early repertoire was highly correlated, but
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Figure 3.8: Ratio of V-gene use in activated to naive repertoire. (A) Ratio of heavy-
chain V-gene use between class-switched IgA and IgG to naive IgM. Twins A1, A2, and
B2 show significant correlation between naïve and classswitched V-gene use (Pearson’s
r: P = 3.6e-4, 3.3e-4, 2.0e-8, respectively). The MS Twin B1, indicated by red open
circles, shows a different ratio in V-gene use between class-switched IgA and IgG to
naive IgM. The null ratio of 1 is indicated with an orange line. Elevated V-genes are
indicated in a separate scale to the right. Individual isotypes IgM, IgG, and IgA are
shown in Fig. S5. (B) Same as above for Vκ and Vλ: (Pearson’s r: P < 1e-10 for A1,
A2, and B2).
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grew more divergent with age. The result is consistent with an observation of an initial
naive repertoire becoming increasingly mixed with a derived but stochastic memory.
By separating the analysis of naive from antigen-experienced subcompartments of the
repertoire, we demonstrate that the naive repertoire remains highly correlated within
twin pairs, even as the activated and memory compartments diversify in a stochastic
manner.

Previous studies have suggested allele use as a source of heritable segment use vari-
ation (33, 43). Studies in V-gene use variation in inbred mouse strains suggest that
the regulatory mechanisms may represent a more general mechanism for maintaining
V-gene diversity in a population (44). A complete characterization of heritable mech-
anisms should consider haplotype architecture, cis -regulatory elements, copy-number
variation, and even transregulatory elements that may in fl uence segment selection
(33, 45).

Despite common segment-use pro fi les, the CDR-H3 repertoires remained highly
personal to each individual in the study. Very few public clones (32) were encountered
between individuals, with no increase in common clones observed between twins (Fig.
4 A ), or even a statistically signi fi cant generation of more biochemically similar
CDR-H3 repertoires ( Fig. S4 ). Although he sequencing performed in this study did
not exhaustively sample all B-cell receptors in each individual, our sampling suggests
that even with identical biased segment pro fi les, the unbiased V(D)J recombination
processes (Fig. 2 B ) are able to generate far more diversity than can be displayed
on an individual ’ s B cells. As a consequence, even with common genesegment pro
fi les, twins are likely to respond with different speci fi c antibodies to a common
environmental exposure.

As previously observed (46), memory V-segment use is correlated to naive use
despite antigen-driven selection between random environmental antigens and personal
CDR-H3 repertoires. The memory compartment, although stochastic in antigen-
driven selection, is sampling repeatedly from a very stable naive distribution. Over
time, the memory compartment can be expected to recapitulate the naive distribution
from which it was sampling. A limited number of V-segments exhibited systematic
underor overrepresentation in class-switched B cells. This bias suggests an active
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mechanism favoring or impeding memory retention of B cells using these V-segments.
These biases may hint at unique properties of speci fi c V-genes.

Subsets of V-segments are already known to exhibit biased representation in in-
fection, autoimmunity, and B-cell lymphoma (1 – 8). The underrepresented V H 1 –
69 segment is known to have a distinctive hydrophobic CDR-H2 that may aid in early
viral response (8), but also predispose toward polyspeci fi cty and chronic lympho-
cytic leukemia (47 – 49). The V H 4 – 34 V-segment has known autoreactivity to red
blood cell antigens and is overrepresented in cold agglutinin disease (5, 10, 11, 13 –
15, 50), dysregulated in systemic lupus erythematosis (7, 51), and overrepresented in
B-cell lymphomas (1, 3, 52). Past studies have identi fi ed germinal center exclusion
as a mechanism for underrepresentation of the inherently autoreactive V H 4 – 34
segment (1 – 5, 7, 8). Whatever the origins, it is likely that inherited variation in
use of segments under special selection by the adaptive immune system will impact
immune function. Identifying such pro fi le-risk associations would provide a key
component to understanding complex disease pathogenesis.

In our study, one monozygotic twin pair was discordant for MS, a disease in
which B cells appear to contribute greatly to the disease process (9). A previous
study examining this twin pair ’ s genome, epigenome, and RNA demonstrated the
absence of factors in these compartments suitable to explain discordance (42). Here we
establish heritable naive V-gene pro fi les that may contribute to, but are not altered
by, autoimmune pathology. In future studies, personal, stable, naive V-gene use may
act as a useful control to aid in detecting pathology-driven repertoire variation in the
B-cell memory compartment.

3.2.4 Methods

Sample Collection. The study was approved by the University of California, San Fran-
cisco Institutional Review Board. Peripheral blood was obtained from two pairs of
adult, monozygotic twin pairs: Pair A (A1 and A2), female, Caucasian non-Hispanic
origin (Western European and Mediterranean backgrounds); and Pair B (B1 and B2),
female, Ashkenazi Jewish origin. Twin pair B is discordant for MS (affected twin:
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B1). At the time of sampling, monozygotic twin pair A was 54 y old, and monozy-
gotic twin pair B was 57 y old. Twin B1 was diagnosed with relapsing remitting MS
at age 31 and had progressed to a secondary progressive MS course. Since diagnosis,
twin B1 had been treated with numerous immunomodulatory (IFNβ 1, glatiramer
acetate) and immunosuppressive (mitoxantrone, methotrexate, mycophenolate, cy-
clophosphamide) agents, but had been off any of these medications for 10 mo at the
time of sampling. Monozygosity was con fi rmed for twin pair A by SNP analysis
covering all chromosomes and for twin pair B by complete genome sequencing in a
previous study (1).

Amplicon Generation. PBMCs from each individual were split into biological
replicates before RNA extraction. Total RNA was isolated using All Prep kit (Qiagen)
and reverse-transcribed using SMARTer RACE cDNA Ampli fi cation Kit (Clontech).
Isotype repertoires were ampli fi ed using single validated isotype speci fi c3 ´ primers
(Table S1). Products were isolated and puri fi ed using a Gel Puri fi cation kit
(Qiagen). Puri fi ed products were quanti fi ed using Quant-iT PicoGreen dsDNA kit
(Invitrogen).

Sequencing. Gel-puri fi ed IgM, Ig κ ,Ig λ , IgG, IgA, and TCRB 5 ´ RACE
products were taken into the 454 Rapid library construction protocol to uniquely
ligate Lib-L adaptors containing 10-base MIDs/barcodes to each sample. Pooled
libraries were subjected to emulsion PCR and bidirectional sequencing using the GS
FLX Titanium Lib-L chemistry.

Sequencing Depth Determination. A target depth of 5,000 reads ensured a highly
reproducible gene-segment pro fi le ( r > 0.99). Parameters were determined by
simulated sampling from a dataset of 863,577 5 ´ RACE, 454 Titanium sequences
from three healthy controls (Fig. S1).

Antibody Sequence Analysis. To remove chimeric sequences and other common
sources of sequencing error (35), V, J, and CH1 segment use was determined by
probabilistic classi fi cation among National Center for Biotechnology Information
blastn solutions to an IMGT reference database (36) (Tables S4 and S5). D-segments
were only classi fi ed if found between a V-segment and J-segment ( Table S5 ).
Parameters, validation, and performance are reported in Tables S4 and S5. CDRs
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Figure 3.9: Related clone distances. (A) Amino acid distance to next closest CDR-H3
within each twin. (B) Amino acid distance to next closest CDR-H3 across samples
from different individuals. To avoid bias from overcounting expanded clones, se-
quences were clustered and only one representative of each unique V(D)J rearrange-
ment was selected for subsequent analysis. Clonal nonredundancy was established by
considering only one representative from a set of reads bearing the same V-segment,
J-segment, CDR3 length, and CDR3 amino acid composition that differed by less than
two residues from any other CDR-H3 in the dataset. Parameters were determined by
comparing distances to the next closest clone between all clones within an individual’s
samples (assumed to contain clonal variants), and between different individual’s sam-
ples (that cannot share clonal variants). A and B illustrate that the great majority of
variants are single amino acid changes away in CDR-H3, but the minimum distance to
the closest unrelated clone is at least 4 amino acid changes. A cutoff of 2 amino acids
maximizes separation between related and unrelated clones: clustering the majority
of redundant clones without falsely clustering unrelated clones. Although it is true
that a limited number of distantly related clones may not be grouped in some cases,
by using a cutoff of 2, the majority of bias is eliminated from the dataset. The most
frequent clone is chosen as the representative of a related cluster of clonal variants.
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Table 3.2: Glanville PNAS 2011 Table1.

were identi fi ed with pro fi le Hidden Markov Models trained on IMGT segments (53)
( Table S6 ). Reads not passing all criteria were fi ltered from subsequent analysis.
Code available at http://sourceforge.net/projects/vdjfasta/.

Clone Clustering. Unlike the TCR repertoire (2), the antibody repertoire contains
a large number of highly expanded and somatically mutated clonal variants. To
avoid bias from overcounting expanded clones, sequences were clustered, and only
one representative of each unique V(D)J rearrangement was selected for subsequent
analysis. Clones were considered redundant and removed if they shared the same V-
gene, J-gene, CDR3 length, and CDR3 amino acid sequence that differed by less than
3 amino acids. Parameters were determined through the analysis of clone distances
within individuals (assumed to contain clonal variants), and across individuals (that
cannot share clonal variants). For details, see Fig. S4.

In Silico Cell Sorting. The amount of V-segment mutations were used to classify
reads as either naive or activated: over 270 bp of V-gene, 0 – 4bp mismatches to
reference were considered naive, and > 4 bp mismatches were consider activated. Pa-
rameters were determined through analysis of 379,637 CD27 − sequences and 483,940
CD27 + obtained from CD27 FACSsorted CD20 + cells from three healthy controls
( Fig. S2 ), as well as 40,000 TCRB sequences from each of the twins (Fig. 3 A ).
For details, see Fig. S2 .

Statistical Analysis. Pairwise V-segment pro fi le comparisons were performed be-
tween biological replicates, within monozygotic twin pairs, and between monozygotic
twin pairs with Pearson ’ s correlation coef fi cient. V-segment pro fi le clustering
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Table 3.3: Glanville PNAS 2011 Table2.

was performed with the R package pvclust using Wards agglomerative method and
correlation distance. Cluster con fi dence was addressed with AU multiscale multistep
resampling bootstrap con fi dence values using 10,000 bootstrapping replicates (37,
38). AU > 95% was considered signi fi cant. Nested ANOVA was used to compare
individual V-segments within and between monozygotic twins and to estimate their
respective variance components. A single sample t test of log 2 ratios was used to
evaluate biased use in class-switched vs. naive V-segment use. Given the number of
naive segments evaluated (95: 34 V H ,20V κ ,25V λ , and 19 D H ), we used the
Bonferroni correction multiple comparisons correction such that P values < 0.05/95
= 5.3e-4 were considered to be statistically signi fi cant. Analyses were performed in
R version 2.11.1.



CHAPTER 3. HEREDITY, ENVIRONMENT AND RECEPTOR CONVERGENCE 311

3.2.5 Acknowledgements

We thank the individuals who agreed to serve as subjects for this study, Dilduz Telman
for 454 emulsion processing, and Stacy Caillier for expert sample p reparation. This
work was supported by National Institutes of Health Grant R01NS26799, National
Multiple Sclerosis Society Grant RG 2901, and a grant fro m Small Ventures USA
Inc.

3.2.6 References

1. Bhat NM, et al. (2004) B cell lymphoproliferative disorders and VH4-34 gene
encoded antibodies. Hum Antibodies 13:63 – 68.

2. Chan CH, Hadlock KG, Foung SK, Levy S (2001) V(H)1-69 gene is preferen-
tially used by hepatitis C virus-associated B cell lymphomas and by normal B cells
responding to the E2 viral antigen. Blood 97:1023 – 1026.

3. Marasca R, et al. (2001) Immunoglobulin gene mutations and frequent use
of VH1-69 and VH4-34 segments in hepatitis C virus-positive and hepatitis C virus-
negative nodal marginal zone B-cell lymphoma. Am J Pathol 159:253 – 261.

4. Owens GP, et al. (2007) VH4 gene segments dominate the intrathecal humoral
im- mune response in multiple sclerosis. J Immunol 179:6343 – 6351.

5. Pugh-Bernard AE, et al. (2001) Regulation of inherently autoreactive VH4-34
B cells in the maintenance of human B cell tolerance. J Clin Invest 108:1061 – 1070.

6. Thorsélius M, et al. (2006) Strikingly homologous immunoglobulin gene
rearrange- ments and poor outcome in VH3-21-using chronic lymphocytic leukemia
patients in- dependent of geographic origin and mutational status. Blood 107:2889 –
2894.

7. van Vollenhoven RF, et al. (1999) VH4-34 encoded antibodies in systemic
lupus erythematosus: A speci fi c diagnostic marker that correlates with clinical
disease characteristics. J Rheumatol 26:1727 – 1733.

8. Wang TT, Palese P (2009) Universal epitopes of in fl uenza virus hemagglu-
tinins? Nat Struct Mol Biol 16:233 – 234.



CHAPTER 3. HEREDITY, ENVIRONMENT AND RECEPTOR CONVERGENCE 312

9. Hauser SL, et al.; HERMES Trial Group (2008) B-cell depletion with rituximab
in re- lapsing-remitting multiple sclerosis. N Engl J Med 358:676 – 688.

10. Zheng NY, et al. (2004) Human immunoglobulin selection associated with
class switch and possible tolerogenic origins for C delta class-switched B cells. J Clin
Invest 113: 1188 – 1201.

11. Pascual V, et al. (1992) VH restriction among human cold agglutinins. The
VH4-21 gene segment is required to encode anti-I and anti-i speci fi cities. J Immunol
149: 2337 – 2344.

12. Pascual V, Capra JD (1992) VH4-21, a human VH gene segment overrepre-
sented in the autoimmune repertoire. Arthritis Rheum 35:11 – 18.

13. Børretzen M, Chapman C, Stevenson FK, Natvig JB, Thompson KM (1995)
Structural analysis of VH4-21 encoded human IgM allo- and autoantibodies against
red blood cells. Scand J Immunol 42:90 – 97.

14. Thompson KM, et al. (1991) Human monoclonal antibodies against blood
group antigens preferentially express a VH4-21 variable region gene-associated epi-
tope. Scand J Immunol 34:509 – 518.

15. Silberstein LE, et al. (1991) Variable region gene analysis of pathologic human
autoantibodies to the related i and I red blood cell antigens. Blood 78:2372 – 2386.

16. Kakoulidou M, et al. (2004) The autoimmune T and B cell repertoires in
monozygotic twins discordant for myasthenia gravis. J Neuroimmunol 148:183 – 191.

17. Kohler PF, Rivera VJ, Eckert ED, Bouchard TJ, Jr., Heston LL (1985) Genetic
regulation of immunoglobulin and speci fi c antibody levels in twins reared apart. J
Clin Invest 75: 883 – 888.

18. Sjöberg K, et al. (1992) Genetic regulation of human anti-malarial antibodies
in twins. Proc Natl Acad Sci USA 89:2101 – 2104.

19. Brix TH, Kyvik KO, Hegedüs L (2000) A population-based study of chronic
autoim- mune hypothyroidism in Danish twins. J Clin Endocrinol Metab 85:536 –
539.

20. MacGregor AJ, et al. (1995) Rheumatoid factor isotypes in monozygotic and
dizygotic twins discordant for rheumatoid arthritis. J Rheumatol 22:2203 – 2207. 21.
Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575 – 581.



CHAPTER 3. HEREDITY, ENVIRONMENT AND RECEPTOR CONVERGENCE 313

22. Huber C, et al. (1993) The V kappa genes of the L regions and the repertoire
of V kappa gene sequences in the human germ line. Eur J Immunol 23:2868 – 2875.

23. Kawasaki K, et al. (1995) The organization of the human immunoglobulin
lambda gene locus. Genome Res 5:125 – 135.

24. Matsuda F, et al. (1998) The complete nucleotide sequence of the human
immuno- globulin heavy chain variable region locus. J Exp Med 188:2151 – 2162.

25. Cox JP, Tomlinson IM, Winter G (1994) A directory of human germ-line V
kappa segments reveals a strong bias in their usage. Eur J Immunol 24:827 – 836.

26. Rao SP, et al. (1999) Biased VH gene usage in early lineage human B cells:
Evidence for preferential Ig gene rearrangement in the absence of selection. J Immunol
163: 2732 – 2740.

27. Suzuki I, P fi ster L, Glas A, Nottenburg C, Milner EC (1995) Representation
of re- arranged VH gene segments in the human adult antibody repertoire. J Immunol
154: 3902 – 3911.

28. Van Dijk-Härd I, Lundkvist I (2002) Long-term kinetics of adult human
antibody repertoires. Immunology 107:136 – 144.

29. Loveridge JA, Rosenberg WM, Kirkwood TB, Bell JI (1991) The genetic
contribution to human T-cell receptor repertoire. Immunology 74:246 – 250.

30. Roth MP, et al. (1994) TCRB-V gene usage in monozygotic twins discordant
for mul- tiple sclerosis. Immunogenetics 39:281 – 285.

31. Weinstein JA, Jiang N, White RA, 3rd, Fisher DS, Quake SR (2009) High-
throughput sequencing of the zebra fi sh antibody repertoire. Science 324:807 – 810.

32. Arnaout R, et al. (2011) High-resolution description of antibody heavy-chain
reper- toires in humans. PLoS ONE 6:e22365.

33. Boyd SD, et al. (2010) Individual variation in the germline Ig gene repertoire
inferred from variable region gene rearrangements. J Immunol 184:6986 – 6992.

34. Jiang N, et al. (2011) Determinism and stochasticity during maturation of
the ze- bra fi sh antibody repertoire. Proc Natl Acad Sci USA 108:5348 – 5353. 35.
Nguyen P, et al. (2011) Identi fi cation of errors introduced during high throughput
sequencing of the T cell receptor repertoire. BMC Genomics 12:106.



CHAPTER 3. HEREDITY, ENVIRONMENT AND RECEPTOR CONVERGENCE 314

36. Glanville J, et al. (2009) Precise determination of the diversity of a combina-
torial antibody library gives insight into the human immunoglobulin repertoire. Proc
Natl Acad Sci USA 106:20216 – 20221.

37. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree
selection. Syst Biol 51:492 – 508.

38. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the
uncertainty in hierarchical clustering. Bioinformatics 22:1540 – 1542.

39. Kala M, et al. (2010) B cells from glatiramer acetate-treated mice suppress
experi- mental autoimmune encephalomyelitis. Exp Neurol 221:136 – 145.

40. van Boxel-Dezaire AH, et al. (2010) Major differences in the responses of
primary human leukocyte subsets to IFN-beta. J Immunol 185:5888 – 5899.

41. Xu JL, Davis MM (2000) Diversity in the CDR3 region of V(H) is suf fi cient
for most antibody speci fi cities. Immunity 13:37 – 45.

42. Baranzini SE, et al. (2010) Genome, epigenome and RNA sequences of
monozygotic twins discordant for multiple sclerosis. Nature 464:1351 – 1356.

43. Posnett DN, et al. (1994) Level of human TCRBV3S1 (V beta 3) expression
correlates with allelic polymorphism in the spacer region of the recombination signal
sequence. J Exp Med 179:1707 – 1711.

44. Yancopoulos GD, Malynn BA, Alt FW (1988) Developmentally regulated and
strain- speci fi c expression of murine VH gene families. J Exp Med 168:417 – 435.

45. Feeney AJ (2009) Genetic and epigenetic control of V gene rearrangement
frequency. Adv Exp Med Biol 650:73 – 81.

46. Tian C, et al. (2007) Evidence for preferential Ig gene usage and differential
TdT and exonuclease activities in human naïve and memory B cells. Mol Immunol
44: 2173 – 2183.

47. Sui J, et al. (2009) Structural and functional bases for broad-spectrum neu-
tralization of avian and human in fl uenza A viruses. Nat Struct Mol Biol 16:265 –
273. 4

8. Corti D, et al. (2010) Heterosubtypic neutralizing antibodies are produced by
in- dividuals immunized with a seasonal in fl uenza vaccine. J Clin Invest 120:1663 –
1673.



CHAPTER 3. HEREDITY, ENVIRONMENT AND RECEPTOR CONVERGENCE 315

49. Lerner RA (2011) Rare antibodies from combinatorial libraries suggests an
S.O.S. component of the human immunological repertoire. Mol Biosyst 7:1004 – 1012.

50. Pascual V, et al. (1991) Nucleotide sequence analysis of the V regions of two
IgM cold agglutinins. Evidence that the VH4-21 gene segment is responsible for the
major cross-reactive idiotype. J Immunol 146:4385 – 4391.

51. Cappione A, 3rd, et al. (2005) Germinal center exclusion of autoreactive B
cells is defective in human systemic lupus erythematosus. J Clin Invest 115:3205 –
3216.

52. Bhat NM, Bieber MM, Young LW, Teng NN (2001) Susceptibility of B-cell
lymphoma to human antibodies encoded by the V4-34 gene. Crit Rev Oncol Hematol
39:59 – 68.

53. Johnson LS, Eddy SR, Portugaly E (2010) Hidden Markov model speed heuris-
tic and iterative HMM search procedure. BMC Bioinformatics 11:431

3.2.7 Copyright

This work was published in the Journal of Infectious Disease with the following refer-
ence: Glanville, Jacob, et al. "Naive antibody gene-segment frequencies are heritable
and unaltered by chronic lymphocyte ablation." Proceedings of the National Academy
of Sciences 108.50 (2011): 20066-20071.

3.3 Convergent heritable antibody responses against

Staphylococcus aureus

In chapter 2.4, Reading specificity in the B-cell receptor repertoire, we presented the
analysis of an IGHV1-69 antibody convergence group that specifically recognized the
broadly neutralizing step epitope of influenza hemagglutinin trimer. As part of that
study, it was established that genotype variation at the IGHV1-69 locus influenzed the
ability of the hosts to generate productive vaccination responses. For structural rea-
sons, as specific CDR-H2 position is implicated in this genotype variability in immune
response. The study established a strong case for the mysterious balancing selection
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of allelic polymorphism active at the IgH loci. In the following study we demonstrate
an additional example of genotype-specific naive encoded responses against common
pathogens: staphylococcus aureus.

Staphylococcus aureus is both an important pathogen and a human commensal.
To explore this ambivalent relationship between host and microbe, we analysed the
memory humoral response against IsdB, a protein involved in iron acquisition, in
four healthy donors. Here we show that in all donors a heavily biased use of two
immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that
neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for
NEAT2. In contrast to the typical antibody/antigen interactions, the binding is
primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69
and IGHV4-39, with a binding mechanism nearly identical for each antibody derived
from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while
part of the adaptive immune system, may have evolved under selection pressure to
encode a binding motif innately capable of recognizing and neutralizing a structurally
conserved protein domain involved in pathogen iron acquisition.

3.3.1 Introduction

Staphylococcus aureus is a major human pathogen that can cause significant mor-
bidity and mortality with a wide range of clinical manifestations(1). These include
bacteremia, pneumonia and infective endocarditis as well as osteoarticular, skin and
soft tissue, and device-related infections1. The clinical burden is further exacer-
bated by the increasing occurrence of antibiotic resistance, in particular the raise of
methicillin-resistant strains (MRSA)2. At the same time S. aureus is a human com-
mensal that is carried persistently (20–30%) or transiently (Z50%) on the skin and
in the nares of the general population1, with the majority of individuals never expe-
riencing an overt infection episode. This remarkable commensal relationship, likely
of evolutionary origins, affords the opportunity to study the immune response to a
bacterial pathogen to which humans are exposed on a continuous or recurrent basis
over their lifetime.
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To explore the role of the immune response in this host/ microbe interaction,
we focused our attention on the mechanism used by S. aureus to obtain the iron
necessary for colonization and pathogenesis3. S. aureus steals iron from haemoglobin,
the most abundant iron source within vertebrates, through the concerted activity of
the proteins in the iron-regulated surface determinant (Isd) locus4. IsdB in particular,
a surface-exposed protein covalently anchored to the cell wall5, functions as a central
component of this pathway by removing heme from haemoglobin and transferring
it to other Isd proteins, which in turn import and degrade it to release iron in the
bacterial cytoplasm4. IsdB contains two structurally conserved NEAT (NEAr iron
Transporter) domains than bind haemoglobin and heme, respectively6–9. NEAT
domains represent a structurally conserved heme-binding protein fold encoded in the
genomes of several other Gram-positive human pathogens such as Bacillus anthracis,
Streptococcus pyogenes, Clostridium perfringens and Listeria monocytogenes10,11.
Importantly, S. aureus strains lacking IsdB or with IsdB mutants unable to bind
haemoglobin, display a reduction in virulence in animal models of staphylococcal
infection6,12. It was also previously shown that a recombinant anti-IsdB antibody
was able to confer protection against S. aureus infections in animal models13.

High-serum titres against lsdB, as well as other S. aureus proteins, are readily
observed in healthy adults14. While their biological significance and possible role in
protection against infection remains to be elucidated, it has been shown that serum
titres against IsdB are elevated during infection15,16. Therefore, to gain a better
understanding of the functionality of these antibodies and to explore the relationship
between the human immune system and the commensal pathogen S. aureus, we used
single-B cell cloning, phage display libraries, high-throughput sequencing and epitope
mapping17, structural and mutagenesis methodologies to characterize in detail the
humoral immune response to the staphylococcal protein IsdB.

3.3.2 Results

Persistence of IsdB-reactive memory B cells. We first determined the presence of
IsdB-reactive B cells in blood samples collected from a donor (D3) at months 1, 3
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and 15 using flow cytometry (FACS), single-cell cloning (Supplementary Fig. 1) and
high-throughput sequencing techniques. By FACS, we observed the persistence of
a distinct IsdB-reactive memory B cell population (~0.06%) within the IgM nega-
tive peripheral memory compartment (Fig. 1a). The majority of the IsdB-reactive
memory B cells collected at three different time points expressed clonally related B
cell receptor (BCR) transcripts: 25 of the 31 unique IsdB-reactive clusters obtained
from this donor contained sibling transcripts isolated from at least two different time
points (Fig. 1b). Longitudinal lineage analysis of the heavy chain variable region of
these clusters indicates that the immune system maintains a repertoire of continually
evolving antibodies against IsdB, presumably as a consequence of steady or inter-
mittent exposure to low levels of antigen due to the commensal relationship between
humans and S. aureus (Supplementary Fig. 2).

Molecular characterization of the anti IsdB antibodies. To investigate the nature
of the interaction of these related antibodies with their target antigens we cloned the
heavy and light chain BCR transcripts from single IsdB-reactive IgM CD19 + CD27
+ memory B cells obtained from the peripheral blood of four healthy donors with
high-antibody titre to IsdB (D1-4) (Supplementary Figs 1 and 3). Overall, 75 unique
antibodies representing 438 single-cell BCR transcripts were confirmed to bind both
recombinant IsdB as well as IsdB on the surface of iron-starved S. aureus cells. Next,
we determined their epitope binning, epitope mapping, affinity and ability to block
haemoglobin binding to IsdB (Fig. 1c; Supplementary Data 1 and Supplementary
Figs 4–7). We found the majority of the antibodies to be directed against epitopes on
the conserved core of IsdB (NEAT1–Linker–NEAT2) (Fig. 1c; Supplementary Fig.
8a) with two prominent sets of antibodies (bins C and P) that block haemoglobin
binding to IsdB, targeting NEAT1 and NEAT2, respectively. Antibodies belonging
to both sets are found in all four donors (Fig. 1c; Supplementary Data 1). Sur-
prisingly, among the antibodies that bind NEAT1, there is a strong bias (7 out of
12 antibodies) towards using the immunoglobulin heavy chain variable gene (IGHV)
4-39 and immunoglobulin kappa light chain variable gene (IGKV) (Supplementary
Fig. 9a), whereas the antibodies that bind NEAT2 are invariably derived from the
IGHV1-69 germline and IGKV light chains (Supplementary Fig. 9b), irrespective of
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Figure 3.10: Characterization of anti-IsdB antibodies in the human memory B cell
repertoire. (a) A persistent population of IsdB þ memory B cells from the periph-
eral blood mononuclear cells (PBMC) of a donor (D3) was observed over a 15-month
period. By FACS, B0.06% of the IgM CD19 + CD27 + memory B cells in the to-
tal memory B cell repertoire of this donor bind IsdB. (b) Most of the cloned BCR
transcripts of the IsdB þ memory B cells collected at month 1, 3 and 15 are clon-
ally related. BCR sequences from single-cell cloning of IsdB + memory B cells were
clustered based on heavy chain V-gene usage and CDR-H3 sequences. In total, we
identified 31 unique clusters from donor D3 over the three collection time points. The
Venn diagram shows that sibling clones within a cluster can be isolated at multiple
time points. (c) Two distinct sets (bin C and bin P) of function-blocking antibodies
specifically target NEAT1 and NEAT2, respectively. Single-cell cloning was per-
formed at three different time points for donor D3 and one time each for donors D1,
D2, and D4. In total, 75 unique antibodies targeting IsdB were identified and char-
acterized. Shown here are the results of a comprehensive epitope binning analysis of
67 antibodies. Each reformatted clone is shown as a box and coloured according to
its VH germline usage. The height of the box indicates the number of clustered BCR
transcripts represented for each reformatted clone. There are in total 9, 34, 327, and
68 anti-IsdB single-cell BCR transcripts for D1, D2, D3 and D4, respectively. Each
column of clones represents an epitope bin and this is overlaid on top of a linear rep-
resentation of the IsdB molecule with NEAT1 in orange, and NEAT2 in blue. Clones
that are able to fully block haemoglobin binding are outlined with a red box.
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the donor of origin. Remarkably, we found several of these antibodies to have affinities
in the single digit pico-molar range at 37 °C (Fig. 2e; Supplementary Fig. 6).

Characterization of IGHV1-69-derived NEAT2 binders (Bin P). To elucidate the
binding mechanism between the IGHV1-69derived antibodies and NEAT2, we de-
termined two crystal structures of Fabs from two different donors in complex with
NEAT2 (Fig. 2a and Table 1; Supplementary Fig. 10a,b). Both structures, denoted
by D2-06-N2 (3.22Å) and D4-30-N2 (3.21 Å), surprisingly exhibited a nearly identical
NEAT2 binding mode (Fig. 2a), with the heavy chain variable domain (VH), par-
ticularly complementary determining region (CDR)-H2, dominating the interaction
in both structures (Fig. 2b). Specifically, the V-gene encoded CDR-H1 and CDR-
H2 contribute 64% of the total buried surface area (BSA) for both structures (Fig.
2d). This heavy reliance on CDR-H1 and CDRH2 is unusual for antibody/antigen
interactions as highly diverse, VDJ recombination-generated CDR-H3s are typically
considered to be the most important CDR for antigen binding18,19. The CDR-H2s
of the Fabs engage the NEAT2 domain in two major modes. First, the b7-turn-b8 of
NEAT2 slides into a groove at the interface of heavy and light chain variable regions,
forming major contacts with the stem of the CDR-H2 loop. Second, F54 (Kabat num-
bering) of CDR-H2 protrudes into the hydrophobic heme pocket of NEAT2, made up
of M362, M363 and F366 in the ahelix 1, V435 on the b7 and Y440 and Y444 on
the b8 of IsdB (Fig. 2b,c). While this group of NEAT2 binding antibodies was
initially found to block haemoglobin binding to IsdB, which likely occurs by steric
hindrance as IsdB NEAT1 and NEAT2 are proposed to be spatially adjacent to each
other based on their homology to the solved crystal structure of haemoglobin bound
to IsdH NEAT2–linker–NEAT3 (ref. 20), the structural data reveals a second very
effective way to block the activity of IsdB as antibody binding to the heme pocket
precludes the possibility of concurrent heme binding9. Given the highly conserved
nature of S. aureus NEAT2, particularly at the binding interface (Supplementary Fig.
8), we predict that these IGHV1-69-derived antibodies will be able to recognize and
neutralize IsdB encoded by the vast majority if not all S. aureus strains (4,112 strains
analysed in this study).
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Figure 3.11: Germline-encoded binding of IGHV1-69 to the NEAT2 domain of IsdB.
(a) Crystal structure of IGHV1-69-derived Fabs from two donors (D2-06-N2 and D4-
30-N2) in complex with NEAT2. The Fabs of D2-06-N2 and D4-30-N2 show a near
identical binding mechanism to NEAT2 as evidenced by the superimposed struc-
tures. To facilitate the crystallization process, a sandwiching Fab from an antibody
(D3–13) that binds NEAT2 at a non-overlapping epitope was used. For clarity, the
sandwiching Fab is removed from the figure, but is included in the Supplementary
Data (Supplementary Fig. 10a,b). (b) Both IGHV1-69-derived antibodies use the
conserved F54 on CDR-H2 to interact with the heme-binding pocket of NEAT2. The
stem of the CDR-H2 loop also mediates major contacts with the b7-turn-b8 loop of
NEAT2. (c) The heme pocket residues of NEAT2 which interact with the conserved
F54 on CDR-H2 are highlighted in the complex with D2-06-N2. They are M362,
M363 and F366 in a-helix 1, V435 on the b-strand 7, and Y440 and Y444 on the
b-strand 8. (d) CDR-H2 dominates the interaction in terms of BSA in both struc-
tures. Structural analysis shows that 75–80% of the BSA is attributed to the heavy
chain, and 20–25% to the light chain. In particular, the CDR-H2 contributes 41 and
49% of total BSA for the respective structures. (e) Mutational analysis confirms the
structural data and demonstrates that all IGHV1-69-derived antibodies in this set
bind NEAT2 with a similar mechanism. The KD for all antibodies in this set and
their respective F54A variants against IsdB NEAT2 were determined by SPR-based
biosensor assays at 37 °C (KD range, nZ2). Antibody binding to NEAT2 variants
of V435R (heme-binding pocket) and D390A/K436A/T437A (b7-turn-b8 loop) was
tested by ELISA (percentage binding relative to binding to wild type IsdB, one repre-
sentative set of results out of three independent experiments is shown). Clones from
each donor were reverted to VH germline sequence and tested for binding to NEAT2
by both ELISA and biosensor analysis, and ability to block haemoglobin binding.
N.D. stands for not determined.
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We next used mutagenesis to determine if the other eight IGHV1-69-derived an-
tibodies in this set bind IsdB in a similar manner, as suggested by the fact that
they all share the IGHV1-69 framework and a conserved F54 in CDR-H2. Figure 2e
shows that a single mutation at the surface-exposed F54 position (F54A) resulted in
4100-fold loss in affinity for all of the antibodies, highlighting that its importance for
binding is shared by every antibody in this set. To further substantiate the common
binding mode, we generated NEAT2 variants with mutations at the binding interface
residues. Mutations in the heme pocket (V435R) and at the base of the b7-turn-b8
motif (D390A/ K436A/T437A; Fig. 2c) consistently disrupted binding to every anti-
body in the NEAT2 binding set without affecting binding of antibodies that also bind
NEAT2 but belong to different epitope bins (Fig. 2e). We observed slight differences
in the extent to which mutations at several NEAT2 residues impacted the binding of
the antibodies (Supplementary Fig. 11a,c), presumably due to subtle differences in
how the distinct CDR-H3 and CDR-L3 of each antibody contribute to binding IsdB.
Overall, the combination of structural and mutagenesis data indicates that IGHV1-
69derived antibodies from four donors bind NEAT2 in similar fashion by primarily
using CDR-H2 germline residues.

Having established the prominent role of CDR-H2 in binding NEAT2 of IsdB,
we determined if these antibodies have other commonalities by first examining the
contribution of the individual CDR-H3 and J-region residues based on the two crys-
tal structures and then by comparing the CDR-H3 amino acid usage of the 10 iso-
lated binders to that of IGHV1-69-derived antibodies in memory repertoires of twelve
healthy donors (Supplementary Fig. 12). For the heavy chain, we did not observe
any common residue on CDR-H3 and JH that contributes substantially to the bind-
ing to NEAT2. Sequence analysis of the 10 binders also did not reveal any particular
preference in immunoglobulin heavy chain joining segment (IGHJ) usage as IGJH1,
3 and 4 were all used (Supplementary Data 1). There seems to be a bias for charged
residues (D, K or R) at position 95 and glycine at position 96, but both positions
only have minor contributions to the overall binding based on the structures (Supple-
mentary Fig. 12). As for the light chain, which overall contributes only 20–24% to
the binding surface, there is no apparent preference for the IGKV or immunoglobulin
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kappa light chain joining segment (IGKJ) usage based on the 10 binders. Interest-
ingly, the CDR-L3s of all the binders are 11 amino acids long, likely resulting from a
direct fusion of IGKV and IGKJ genes. On the basis of the crystal structures, the two
aromatic residues at position 94 and 96, which form a distinct motif (F/WP-W/Y),
are responsible for the majority of the CDR-L3 contribution to the binding. This
motif was also found in another three binders, and a similar X-P-X motif was also
found in four of the remaining five binders, suggesting a potential preference for light
chain having a specific pattern at position 94– 96 in pairing with IGHV1-69-derived
heavy chain to bind NEAT2.

Germline-reverted variants of IGHV1-69-derived antibodies. The shared binding
mode of the IGHV1-69-derived antibodies led us to hypothesize that this germline
has inherent potential to recognize the NEAT2 domain of IsdB. This hypothesis was
tested by reverting the heavy chain V-gene region (framework 1 to framework 3) of
multiple clones from each donor to their respective germline precursor sequences and
testing their binding to IsdB NEAT2 by ELISA and biosensor. While we observed
significant losses in monovalent affinity for all the germlinereverted clones (4600 fold
compared with the originally isolated clones), all of them were still able to bind
IsdB NEAT2 by ELISA with four germline-reverted clones, D2-06-N2, D3-01-N2, D3-
05-N2 and D3-18-N2, having surprisingly high-monovalent affinity (24 nM–60 nM) to
NEAT2 (Fig. 2e). In contrast, non-matured antibodies from na¨ıve B cells typically
bind antigen with high micro-molar affinity and binding can only be reliably detected
in avidity-driven assays21,22. This data further supports the hypothesis that the
IGHV1-69 germline possesses inherent capability to bind IsdB NEAT2. Also, these
germline-reverted antibodies retain the ability to block haemoglobin binding (Fig. 2e;
Supplementary Fig. 7).

Allelic preference of IGHV1-69-derived antibodies. Moreover, we determined that
the binding of IGHV1-69-derived antibodies to IsdB is strongly influenced by the
allelic variation at position 50 (Fig. 3a). We found that the presence of R50, in
contrast to G50 or A50 as in the antibodies described here, completely abolished
the binding (Fig. 3b,c), presumably due to the steric clash between the extended
side-chain of R50 and the IsdB b7-turn-b8 of NEAT2 (ref. 23; Fig. 3d). Data from
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Figure 3.12: Allelic specificity of IGHV1-69-derived NEAT2 binders. (a) Amino acid
differences among functional alleles of IGHV1-69. (b) The VH of clone D2-06-N2 was
germline-reverted to all alleles with amino acid differences, and tested for binding to
IsdB by ELISA. All alleles with a G50R substitution lost binding. ELISA data is an
average of three independent experiments. Error bars are defined as s.d. (c.) Three
individual variants (G50R, F54L and T56I) of D2-06-N2 (IGHV1-69*01 germline-
reverted) were generated and their binding to IsdB was tested. Only variant G50R
showed significant loss of binding. ELISA data is an average of three independent
experiments. Error bars are defined as s.d. (d) Analysis of the structure illustrates
how a change from G to R (most frequent rotamer) at position 50 is expected to cause
a steric clash in the binding to NEAT2.
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the 1000 Genomes Project show that the R50 polymorphism, which abolishes NEAT2
binding, is present in 38% of the IGHV1-69 allele with a predicted homozygous rate of
14% in the general population24. This raises the possibility that there is a population-
level difference in the ability to neutralize NEAT2-mediated heme-iron acquisition and
therefore different susceptibility to S. aureus infection25,26.

Characterization of IGHV4-39-derived NEAT1 binders (Bin C). We also charac-
terized a second class of antibodies that are derived from IGHV4-39 and bind to the
NEAT1 domain of IsdB. We determined the crystal structure of the D4-10-N1 Fab in
complex with NEAT1 (3.17Å; Fig. 4a and Table 1; Supplementary Fig. 10c). The
structure reveals that binding is again dominated by the heavy chain, particularly by
CDR-H2, which contributes 45% of the BSA (Fig. 4b). Specifically, D4-10-N1 utilizes
CDR-H2 residues Y52 and F53 to interact with residues Y165 of NEAT1, targeting
the same binding region that is responsible for the interaction between haemoglobin
and NEAT1 (ref. 6; Supplementary Fig. 13) and therefore providing a mechanistic
explanation on how antibodies in this group block haemoglobin binding. Remarkably,
CDR-H2 F53 protrudes into a hydrophobic pocket of NEAT1 that is structurally ho-
mologous to the heme pocket of NEAT2. Therefore this resembles the IGHV169
CDR-H2 interaction with NEAT2 (Supplementary Fig. 14). All antibodies in the
NEAT1-binding group have a conserved aromatic residue (Y or F) at positions 52
and 53, and lost binding to NEAT1 when these residues were mutated to A (Fig. 4c).
Correspondingly, mutations of NEAT1 at residue Y165 abolished binding for every
antibody in this group without disrupting the binding of antibodies that also bind
NEAT1 but belong to different epitope bins (Fig. 4c and Supplementary Fig. 11b,d).
Collectively, the structural and mutational data strongly suggest that all of the an-
tibodies in this set interact with NEAT1 in a similar fashion. Similar to NEAT2,
the sequence of NEAT1 is also highly conserved (Supplementary Fig. 8), therefore
we expect these IGHV4-39-derived antibodies to be able to recognize and neutralize
IsdB encoded by the vast majority if not all S. aureus strains.

Among the seven IGHV4-39-derived NEAT1 binders there are no apparent prefer-
ences on the usage of IGKV germlines, IGKJ and IGHJ regions (Supplementary Data
1). Analysis of the amino acid usage in CDR-H3 (Supplementary Fig. 15) revealed
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Figure 3.13: Germline-encoded binding of IGHV4-39 to the NEAT1 domain of
IsdB. (a) Crystal structure of an IGHV4-39-derived Fab (D4-10-N1) in complex with
NEAT1. The two aromatic resides (Y52 and F53) in CDR-H2 interact with the
a-helix1 of NEAT1 which is normally involved in binding haemoglobin. IGHV4-39
CDR-H2 F53 of Fab D4-10-N1 protrudes into a hydrophobic pocket of NEAT1, which
is structurally homologous to the heme binding pocket of NEAT2. Crystallization
was facilitated by the use of a sandwiching Fab from an antibody (D3–19) that binds
NEAT1 at a non-overlapping epitope (bin H). For clarity, the sandwiching Fab is
removed from the figure but is included in the Supplementary Data (Supplementary
Fig. 10c). (b) CDRH2 dominates the interaction in terms of BSA. Structural analysis
shows that 79% of the BSA is attributed to the heavy chain, and 21% to the light
chain. The CDR-H2 contributes about 45% of total BSA. (c) Mutational analysis
confirms the structural data and demonstrates that all IGHV derived antibodies in
this set bind NEAT1 with a similar mechanism. The KD for all antibodies in this set
was determined by SPR-based biosensor binding analysis to recombinant full-length
IsdB at 37 °C (KD range, nZ2). The binding of antibody variants at positions 52 and
53 of CDR-H2 to wild type IsdB and the binding of antibodies to NEAT1 variant
Y165R (a-helix 1) were evaluated by ELISA (percentage binding relative to binding
between original isolated antibodies and wild type IsdB, one representative set of
results out of three independent experiments is shown). Every clone was reverted to
VH germline sequence and tested for binding to NEAT1 by biosensor analysis and
ability to block haemoglobin binding. ND stands for not determined.
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a strong underrepresentation of R at position 94, as S, T and K were used instead.
This may affect the typical salt-bridge connection between R94 and D101, which
structurally supports the CDR-H3 loops. Four out of the seven binders are missing
the typical pairing of K/R94 and D101. In addition, we also observed that P or G,
which can alter the backbone conformation, are preferred at position 95. Therefore
it is plausible that even though both residues do not mediate direct binding based on
the crystal structure, they could co-operate to uniquely orient the CDR-H3 residues
in these IGHV4-39-derived NEAT1 binders. Charged residues were also found pref-
erentially at position 99 and 100 among the binders. However, both residues do
not have any direct contact with NEAT1 in the crystal structure of D4-10-N1. The
sequence/structure analysis did not reveal any common contact residue among the
CDR-H3s of the seven IGHV4-39IGKV-derived binders.

Germline-reverted variants of IGHV4-39-derived antibodies. Given the prominent
role of the IGHV4-39 germline-encoded CDR-H2 in binding IsdB NEAT1, we next
measured the affinity of heavy chain V-gene germline-reverted (framework 1–frame-
work 3) antibodies for all IGHV4-39 antibodies. Remarkably, all IGHV4-39 germline-
reverted antibodies exhibited very high affinities (with KD values at 37 °C in the sin-
gleto triple-digit nanomolar range; Fig. 4c), supporting the idea that the IGHV4-39
germline has intrinsic potential for recognizing IsdB NEAT1. These germline-reverted
antibodies can also block haemoglobin binding (Fig. 4c; Supplementary Fig. 7).
This feature appeared to be specific for IGHV4-39, as reverting selected antibodies
to two other highly homologous germlines23, IGHV4-30*04 and IGHV4-61*01, re-
sulted in significant loss of binding for the antibodies evaluated (Fig. 5). Unlike the
IGHV1-69 NEAT2 binders, allelic variation did not appear to affect the ability of
IGHV4-39-derived clones to bind NEAT1 (ref. 23; Fig. 5).

IGHV4-39 encoded NEAT1 binders from naı¨ve B cells. To expand the breadth
of our findings we first tested serum samples from 36 donors (including the origi-
nal 4 donors) against the two NEAT domains of IsdB and show that there are de-
tectable titres against both NEAT domains (Supplementary Fig. 16). Moreover, these
titres were reduced by pre-blocking the NEAT domains with antibodies that bind the
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haemoglobin and heme-binding sites, suggesting that antibodies that target the func-
tional domains of IsdB are present in the serum of all donors tested (Supplementary
Fig. 16).

Next, given that the majority of the IsdB NEAT domain binding was primarily
driven by germline-encoded CDR-H2, we investigate if antibodies from na¨ıve B cells
can recognize IsdB in a similar manner as the one described above and asked if such
antibodies could be found in additional donors. Using individually barcoded IGHV4-
39 specific primers, we selectively amplified the IGHV4-39 variable heavy chain gene
from the cDNA of sorted CD19+ CD27IgM+ naive B cells of 36 individuals; this
allowed us to unequivocally match binders with their respective donors. A single-
chain Fv (scFv) phage display library was then constructed by pairing the individually
barcoded IGHV4-39 VH gene with the pooled na¨ıve IGKV families 1–4 genes from
all donors (schematics are shown in Fig. 6a). Sequencing of the starting phage
library confirmed that the heavy chain of more than 90% of the clones was encoded
by IGHV4-39, with minor contaminations from other IGHV4 family members. After
four rounds of panning against IsdB NEAT1 domains, the binding of 960 individual
phage clones against IsdB and its variants was evaluated by ELISA. About 90% of the
clones showed specific binding to full-length IsdB and IsdB NEAT1 domain. Sequence
analysis determined that three of the phage clones with unique CDR-H3 (D14-1, D15-
1 and D16-1) represented the majority of the binders (96%); this could be due to their
superior affinity as scFv’s (not determined) or to a growth bias introduced through
the phage amplification process. Despite the presence of these three dominant clones,
we were able to isolate a total of 16 clones with unique CDR-H3 sequences from 13
different donors (Supplementary Fig. 17).

The binding characteristics of the isolated clones were then evaluated. Remarkably
all the unique phage clones lost binding to IsdB NEAT1 variant Y165R, suggesting
that all the clones bind the haemoglobin-binding pocket on NEAT1 (Supplementary
Fig. 17). Next, one clone from seven different donors was randomly selected and
reformatted as IgG (Fig. 6b and Supplementary Fig. 18). Consistent with the phage
binding results, all seven reformatted IGHV4-39-derived antibodies maintained the
ability to recognize IsdB NEAT1 and all lost binding to the IsdB Y165R variant as
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Figure 3.14: Germline and allelic specificity of IGHV4-39-derived NEAT1 binders.
(a) Clone D4-10-N1 was reverted to all allelic variants with amino acid differences
relative to IGHV4-39*01. No differences in IsdB binding were observed. Results
shown are an average of three independent experiments. Error bars are defined as
s.d. (b) IGHV4-39*01 has high sequence homology to IGHV4-30*04 and IGHV4-
61*01 (they only differ by six amino acids in the variable region), and they all have
the critical Y52 and Y53 residues in the CDR-H2. (c) The VH of four clones, one
from each donor, were reverted to both IGHV4-30*04 and IGHV4-61*01, and their
binding to IsdB was tested by ELISA. All IGHV4-30*01-derived variants were unable
to bind IsdB, while most of the IGHV4-61*01-derived variants exhibited significantly
loss of binding. ELISA data is an average of three independent experiments. Error
bars are defined as s.d.
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measured by Elisa (Supplementary Fig. 18). We confirmed binding of these antibod-
ies to IsdB in a monovalent based biosensor assay at 37°C, while their Y52A/Y53A
variants lost the ability to bind IsdB (Supplementary Fig. 18). Overall, these re-
sults showed that the na¨ıve IGHV4-39 clones isolated from the na¨ıve B cells of
13 additional donors bind IsdB NEAT1 in a manner similar and consistent with the
binding interaction described above for the antibodies isolated from the memory B
cells of four donors. This further strengthens the suggestion that IGHV4-39 possesses
inherent affinity toward the NEAT1 domain of IsdB of S. aureus.

We next used the sequence information from these phagederived NEAT1 binders to
further examine the immunoglobulin gene use looking for any additional features that
may be common toallIGHV4-39-derivedbinders.First,thena¨ıvenatureofthese phage
binders allows DH gene usage to be more reliably identified; we did not observe
any preference for specific DH genes (Supplementary Fig. 17). Meanwhile, similar to
what was observed for the NEAT1 binders isolated from memory B cells, we identified
a strong underrepresentation of R at position 94 (G, S and T are used instead), as
14 of 16 phage binders (88%) do not have the typical salt-bridge pair of R94-D101.
This is in contrast to the starting library, where 77% of the phage clones have R94
and D101 (Supplementary Fig. 19). In addition, the remaining two clones possessing
the R94-D101 pair have P at position 95. This was also frequently observed in the
memory B-cell-derived binders (Supplementary Fig. 15). Besides position 94 and 95,
there is no apparent preference for amino acid usage in the CDR-H3 (Supplementary
Fig. 19). Unexpectedly, IGHJ3 was exclusively used for all of the phage isolated
binders. This strong bias of IGJH3 was not observed in our seven NEAT1 binders
isolated from memory B cells, as all IGHJ1-6 genes were used. It is possible that this
bias was introduced by displaying antibodies as scFv or by an inherent bias of the
phage selection process. As for the light chain, IGKV3-20 was the most frequently
used variable kappa light chain (VK) germline in these binders (11 out of 16), similar
to what we observed from the memory B cells-derived NEAT1 binders (3 out of 7).
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Figure 3.15: Naı¨ ve IGHV4-39-derived antibodies from naı¨ ve B cells. (a) Schemat-
ics of na¨ıve IGHV4-39 antibody phage library IgM þ na¨ıve B cells were isolated
individually by FACS from 36 donors. Total Ig RNA was converted into cDNA us-
ing an IgM then uniquely barcoded IGHV4-39 primers for each donor were used to
selectively amplify the IGHV4-39 VH gene from the cDNA. The amplified VH genes
were then pooled together and paired with the light chain variable genes from IGKV
families 1–4 amplified from the same set of donors to generate the single-chain Fv
library. Antibody libraries were then displayed on phage and 4 rounds of panning
against recombinant IsdB NEAT1 were performed. (b) Binding characterization of
IGHV4-39 encoded na¨ıve NEAT1-binding antibodies from seven different donors.
Heavy and light chain germlines usage, CDR-H3 sequence identities and number of
variable heavy chain framework nucleotide mutation of the seven NEAT1 binders are
shown. The observed single framework mutation in selected clones may have been
introduced by the amplification process during library generation. The binding of
the parental antibodies and their Y52A/Y53A variants to full-length IsdB was deter-
mined by SPR-based biosensor binding analysis at 37 °C. The binding of the parental
antibodies to the full-length IsdB Y165R variant was determined by ELISA (n 1⁄4
2).
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3.3.3 Discussion

In this study, we characterized in detail the endogenous humoral response in healthy
individuals against IsdB, a prominent molecule in the iron-acquisition pathway nec-
essary for colonization and pathogenesis of the commensal bacterium S. aureus. We
found that the human immune system maintains a sizable repertoire of continually
evolving IsdB-reactive memory B cells by comparing the repertoire of a NEAT-2
binder over a 15-month period (Supplementary Fig. 2). For IsdB, high-serum titres
are representative of antibodies that bind to a variety of epitopes on IsdB. Among
them, we identified two prominent sets of neutralizing antibodies that target the spe-
cific fold of the highly conserved NEAT domains of IsdB with a dedicated, highly
specific V-gene response for each NEAT domain, IGHV4-39 for NEAT1 and IGHV1-
69 for NEAT2. Interestingly these neutralizing antibodies are not derived from the
IGHV3 family which encode antibodies targeted by the S. aureus virulence factor
Protein A27,28. These antibodies bind with very high affinity and neutralize the
activity of IsdB by occupying the structurally homologous active regions on NEAT1
(Hb binding) and NEAT2 (heme binding) (Supplementary Fig. 14), respectively. The
affinities of these antibodies, with dissociation constants measured at 37 °C in the low
pM range in all four donors, are beyond the proposed in vivo affinity maturation limit
of 100 pM to 1nM (ref. 29). This perhaps results from the continuous or intermittent
exposure to very low levels of antigen as a consequence of the commensal nature of
S. aureus. Low antigen levels may only be recognized by B cell clones expressing
these high affinity BCRs, thereby favoring their specific stimulation and subsequent
selection in the context of the continually maturating B cell memory compartment.

We have isolated, by single-cell cloning, IGHV1-69-derived antibodies against
NEAT2 and IGHV4-39-derived antibodies against NEAT1 from memory B cells from
four donors and additional IGHV4-39-derived antibodies against NEAT1 from na¨ıve
B cells from 13 donors using a phage display approach. We show by a combina-
tion of structural and mutagenesis data that these antibodies bind the respective
NEAT domains in a similar fashion. The binding interaction is primarily driven by
the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39. In
fact, we also show that germline-reverted versions of these antibodies demonstrate



CHAPTER 3. HEREDITY, ENVIRONMENT AND RECEPTOR CONVERGENCE 333

specific binding to their respective NEAT domains and maintain the ability to block
the interaction with haemoglobin. Sequence analysis of the CDR3s of the binders
revealed positional preferences of certain amino acid residues, for example a strong
underrepresentation of the canonical R at position 94 of the heavy chain for NEAT1
binders and the presence of aromatic residues at positions 94 and 96 of the light chain
for NEAT2 binders. However, there is no conserved residue in CDR-H3 among the
binders that mediates major contacts with the NEAT domains. Given the large size of
the human antibody repertoire30,31 and the importance of the highly diverse CDR-
H3 for binding19, antigen recognition that is predominantly driven by the invariant
V-gene encoded CDR-H2 is rarely observed. Similarly, the occurrence of multiple an-
tibodies isolated from different individuals that bind the same epitope with a similar
mechanism is very rare and suggests a predetermined structural bias in the immune
repertoire. Several examples have been reported in the literature to suggest a germline
preference for antibody binding to certain antigens32,33. One noteworthy example is
the recognition of the I/i antigen (N-acetyllactosamine) on red blood cells by IGHV4-
34-derived IgM antibodies34,35. In absence of a co-crystal structure, mutagenesis
studies suggested an unconventional binding mode as the germline-restricted interac-
tion with the antigen is mediated by framework 1 residues and the C-terminal region
of CDR-H3 (refs 36,37). Another example of germline-restricted response is repre-
sented by antibodies against the capsular polysaccharide of Haemophilus influenzae
type b. A strong preference for VH3 families usage was identified, in particular
IGHV3-23 and IGHV3-15 (refs 38,39). A subset of these antibodies has a binding
interface characterized by IGHV3-23 with short CDR-H3 and IGKV2D-29 with an R
residues inserted in the V–J junction39,40. A structural model and limited mutagen-
esis suggested potential interactions from all CDRs with the short CDR-H3 and long
CDR-L1 forming the floor of a groove flanked by CDR1s and CDR2s of the heavy and
light chain41. In both cases, in the absence of definitive structural characterization,
the binding modes appear to be clearly different from the CDR-H2-driven interaction
described in our study.

Detailed structural analysis of the binding mechanism is needed to illustrate the
fine details of these germline-restricted recognitions; however, such structural data
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has largely not been available. The most prominent published body of work with de-
tailed structural information is represented by two sets of IGHV1-69-derived broadly
neutralizing antibodies that bind two distinct sites on the hemagglutinin molecule
(HA) of the influenza virus. The first set of antibodies targets the receptor binding
site on the globular head of HA42,43 (Supplementary Fig. 20) while the second set
binds a structurally conserved epitope on the stem region of the molecule44–46 (Sup-
plementary Fig. 21). Four antibodies from different donors that target the receptor
binding site of HA, all with a heavy chain derived from IGHV1-69, were shown to
recognize an overlapping epitope on the head of the molecule. This led to the sug-
gestion of a IGHV1-69 germline preference for binding this region of HA. However,
the structural data clearly shows that their binding modes are quite different from
each other (Supplementary Fig. 20). This seems to stem from the fact that the bind-
ing interaction and orientation is driven by the different CDR-H3s of the different
antibodies.

For the antibodies targeting the stem region of HA, IGHV1-69derived antibodies
isolated from three different donors were shown to consistently use a signature motif
on CDR-H2 (I53/M53 and F54) and Y98 from CDR-H3 to target the same hydropho-
bic groove on HA47,48. Previous work has also shown that germline-reverted versions
of these broadly neutralizing antibodies were able to engage HA49, suggesting that
the IGHV1-69 CDR-H2 motif is well suited to recognize a specific epitope on the HA
stem50. Our results parallel the work on antibodies against the stem region of HA
and show that the germline-encoded structural motif on IGHV1-69 CDR-H2 is not
only well suited to bind the hydrophobic heme pocket of IsdB NEAT2 of S. aureus,
but is also the essential determinant of this binding (Figs 2d and 3b). Unlike the
IGHV1-69-HA-stem binding mechanism, our data shows that CDR-H2 is so crucial
for binding that IGHV1-69-derived antibodies from different healthy donors exhibit a
nearly identical binding mechanism to NEAT2 (Supplementary Fig. 21). Moreover,
to our knowledge, our work illustrates for the first time that the IGHV4-39 CDR-H2
motif is also particularly well suited to recognize the haemoglobin-binding domain of
IsdB NEAT1, uncovering another example of a germline specialized in binding to a
common antigen. Altogether, the fact that both sets of antibodies were found in all
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four donors tested and the results showing that the germline-reverted version of these
antibodies maintain surprisingly high affinity for IsdB, further support the conclu-
sion that the CDR-H2 motifs of IGHV1-69 and IGHV4-39 represent a particularly
good fit to bind and neutralize the active sites on NEAT1 and NEAT2 of S. aureus,
respectively. Because of the high degree of sequence identity among IsdB molecules
encoded by S. aureus strains, we expect these antibodies to be broadly neutralizing
across these strains. In addition, NEAT domains are structurally conserved with
many homologues encoded in the genomes of Gram-positive bacteria in the phylum
Firmicutes10 (Supplementary Fig. 22), therefore we speculate that IGHV1-69 and
IGHV4-39 antibodies against other significant human pathogens such as Bacillus an-
thracis, Streptococcus pyogenes, Clostridium perfringens and Listeria monocytogenes
may be already present in humans, or may be induced on antigen exposure.

Overall, our study reveals that two human germlines, IGHV1-69 and IGHV4-
39, have inherent affinity against the specific folds of structurally conserved NEAT
domains of a bacterial commensal pathogen. The results expand the concept of
germline-restricted usage of antibodies suggested mostly for viral pathogens50–52 and
extend this to a bacterial pathogenic protein. In addition, our work also illustrates
for the first time how germline V-gene encoded residues can be so dominant in driving
antibody binding that resulting antibodies from different individuals exhibit nearly
identical binding mechanism. The data suggest that existing human V-genes may
represent not only V(D)J recombination scaffolds for the antibodies of the adaptive
repertoire, but also innate-like proto-receptor scaffolds to recognize certain unique
structural motifs presented by infectious pathogens, such as the influenza virus and
S. aureus. This may allow a proportion of the adaptive immune repertoire to ac-
tivate rapidly and provide protection against a pathogen at the earliest encounter,
without the time required for lengthy affinity maturation. Given the presumptive
evolutionary advantage of these responses53, it is possible that pathogens to which
humans are exposed seasonally or recurrently due to a commensal relationship may
have exerted evolutionary pressure to promote the retention or expansion of specific
V-gene segments in the human repertoires.
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3.3.4 Methods

Isolation and clustering of anti-IsdB antibodies. Blood samples of 50–100 ml were
collected from healthy consented donors. Drawing of blood samples was approved
by the Pfizer Institutional Review Board. The blood sample was first diluted 1:1
with PBS/2% FBS/1 mM EDTA and centrifuged at 120g for 10 min with the brake
off. The plasma fraction was removed and replaced with an equivalent volume of
PBS/2% FBS/1 mM EDTA. The sample was further diluted 1:1 with PBS/2% FBS/1
mM EDTA and layered on top of Ficoll-Paque PLUS (GE Healthcare). After cen-
trifugation at 2,000 r.p.m. for 20 min with brake off, PBMC were collected from
the interface and washed twice with PBS/2% FBS/1 mM EDTA. ACK lysis buffer
(Thermo Fisher Scientific) was added to remove the red blood cells. After washing the
cells with PBS/2% FBS/1 mM EDTA, B cells from the PBMC were enriched using
EasySep Human Pan-B Cell Enrichment kit (Stemcell Technologies) according to the
manufacturer’s protocol. After the enrichment, B cells were washed with PBS/2%
FBS/1 mM EDTA and labelled at 8 °C for 2–4 h with anti-human CD3-PerCP/Cy5.5
(1:20 dilution, UCHT1), anti-human CD16 PerCP/Cy5.5 (1:20 dilution, 3G8), anti-
human CD19-AlexaFluor488 (1:20 dilution, HIB19), anti-human IgM-Phycoerythrin
(1:20 dilution, MHM-88), anti-human CD27-Allophycocyanin (1:20 dilution, O323),
7-AAD (1:100 dilution) (all from Biolegend) and 40 nM recombinant IsdB conjugated
to Pacific-blue according to the manufacturer’s protocol (Thermo Fisher Scientific).
Cells were then pelleted, washed and resuspended in PBS/2% FBS for FACS sorting.
CD3, CD16-, 7AAD-, IgM-, CD19+, CD27+, IsdB+ memory B cells were either bulk
sorted for high-throughput sequencing or single-cell sorted into 96-well PCR plates
for cloning. Individual cells were collected into each well of a 96-well plate containing
3.5 ml of Quick extraction buffer (Epicenter Bio) and immediately frozen over dry
ice. Reverse transcription mixture containing 0.5 ml of reverse transcription primers
mix (Supplementary Table 1), 5 ml of 2x reaction buffer and 1 ml of enzyme mix from
SuperScript III One-Step RT-PCR system (Thermo Fisher Scientific) was added to
the cell solution and reverse transcription was carried out at 55 °C for 30 min. Then,
20 ml of PCR mixture containing 0.15 mM each of the leader region primer mix, 0.25
mM each of constant reverse primer mix (Supplementary Table 1), 10 ml of the 2 x
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reaction buffer and 0.5 ml of enzyme mix from the SuperScript III One-Step RT-PCR
system were added directly to the tube, which contained 10 ml of the reverse tran-
scription reaction product. PCR reaction conditions were 94°C for 2min, 40 cycles
of 94°C for 15s, 55°C for 30s and 68°C for 1 min, a final extension step of 68 °C
for 5 min. Separate nested PCR reactions were then performed to further amplify
the transcripts of heavy chain and light chain (Vkappa þ Vlambda) using Taq poly-
merase system (Thermo Fisher Scientific) according to the manufacturer’s protocol.
Specifically, 0.2 mM each of variable region forward primer mix and 0.3 mM each of
constant region reverse primer mix (Supplementary Table 1), and 2 ml of the first
PCR reaction product as template were used in the nested PCR. Reaction conditions
were 94 °C for 2 min, 40 cycles of 94°C for 15s, 56°C for 30s and 72°C for 1min, and
a final extension step of 72 °C for 10 min. PCR amplicons were then gel-purified
and sequenced. DNA sequences were analysed using an in-house developed software
that identifies V-gene usage, J gene usage and CDRs identities. Antibodies (mAbs)
sequences were then further triaged through a clustering algorithm based on VH and
VL gene usages, CDR-H3 length and amino acid composition to identify unique clones
and potential cluster of sibling clones for recombinant antibody expression.

High-throughput sequencing of memory B cells. High-throughput sequenc-
ing was performed as previously described54. In brief, total RNA was isolated
from bulk sorted CD3-, CD16-, 7AAD-, IgM-, CD19+, CD27+, IsdB+ mem-
ory B cells (see above for labelling conditions) using RNeasy micro kit accord-
ing to the manufacturing protocol (Qiagen). RNA quality was assessed using an
Agilent Bioanalyzer. Total RNA was reverse-transcribed into cDNA using the
SMARTer RACE kit according to the manufacturing protocol (Clontech) and cDNA
was used as template for five IgG-VH and two IgA-VH PCR reactions. The
PCR reaction was carried out using a modified 50 SMARTer RACE 10 x Uni-
versal Primer Mix (UPM) (Clontech) with the Lib-L-specific adaptor (Roche) se-
quence attached to the short oligo in the UPM (50CCTATCCCCTGTGTGCCTTG-
GCA GTCTCAGCTAATACGACTCACTATAGGGC-30) and a IgG or IgA isotype
specific 30 primers (IgG, 50-GGGAAGACSGATGGGCCCTTGG -TGG-30; IgA,
50-CAGGCAKGCGAYGACCACGTTCCCATC-30) with the Lib-L-specific adaptor
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(50-CCATCTCATCCCTGCGTGTCTCCGACTCAG-30) and a six-nucleotide bar-
code sequence attached at the 30 end. The reaction was carried out for 31 cycles
following the manufacturer’s recommendation. Barcoded IgG-VH (B640 base pairs
(bp)) and IgA-VH (B630 bp) transcript libraries were purified using AMPure XP
(Beckman Coulter), quantified using PicoGreen (Thermo Fisher Scientific) and pooled
at equimolar amounts. The final multiplexed library pools were subjected to emul-
sion PCR and unidirectional sequencing using the GS FLX Titanium Lib-L chemistry
(Roche).

Lineage analysis of the memory B cells. Lineage analysis and the tree topology
were performed with the nucleotide sequences generated from 454 highthroughput se-
quencing of the donor’s memory B cell repertoire and from the corresponding single-
cell cloning. The VDJ segments and VH CDR3 of each clone were first identified
by using VDJFasta31. Sequences were clustered into each clonal lineage using the
VDJFasta single linkage method described previously54. For tree topology represen-
tation of the memory B cell repertoire, somatic hypermutations and isotype in each
sequence were identified by using VDJFasta. Sequences were aligned with MUSCLE
algorithm55. Identical sequences at the nucleotide level were collapsed to a single
sequence. To avoid erroneous connections due to DNA amplification error, any less
frequent clonal lineage member, which has connectivity of 1 and is only one nucleotide
different from a more frequent neighbour, was grouped into the higher frequency
neighbour. A lineage tree topology was then generated using the nucleotide align-
ment, somatic hypermutation level and isotype identity. The diagram was generated
using Cytoscape.

Expression and purification of mAbs and protein reagents. Human IgGs and
Fabs were expressed using the Expi293 system (Thermo Fisher Scientific). Human
IgGs were purified with MabSelect (GE Healthcare). Fabs were histidine tagged and
purified with Ni Sepharose Excel (GE Healthcare). Isd protein sequences used in this
study are based on that of S. aureus strain USA300. The genes of Isd proteins were
directly synthesized by GeneArt (Thermo Fisher Scientific) and cloned into either
the pET-20 or the pET-47 expression vector (Novagen). Isd proteins and variants
(truncations and point mutants) were expressed in BL21 DE3 cells (Thermo Fisher
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Scientific) under the control of lac operator with an N-term histidine tag and C-term
Flag Tag. These constructs were purified with Ni Sepharose Excel (GE Healthcare).
The NEAT1 and NEAT2 domains utilized in crystallization were expressed with an N-
terminal histidine tag followed by a HRV 3C site using the pET-47b vector (Novagen).
The NEAT domains were purified with Ni Sepharose Excel, and then subjected to
HRV 3C cleavage overnight at 4 °C for tag removal. Digested protein was then
reapplied to Ni Sepharose Excel and the flow through was collected, removing the tag
and undigested protein. NEAT domains were then complexed with their respective
Fab (excess NEAT) and underwent size exclusion chromatography using a Superdex
200 column in AKTA (GE Healthcare). The sandwich Fab was later added at a 1:1
ratio to this complex. Human haemoglobin (Hb) was purified from fresh red blood
cells obtained from Bioreclamation LLC. Briefly, haemoglobin from cell lysates was
purified by anion exchange chromatography using Q-sepharose XL (GE healthcare),
followed by size exclusion chromatography with Superdex 200 Prep Grade in AKTA
(GE healthcare)56.

Epitope binning. Epitope binning for the anti-IsdB mAbs was carried out as
previously described17. Briefly, anti-IsdB antibodies were individually amine-coupled
as single spots onto a SensEYE G-COOH (Ssens bv) sensor chip to generate a 96-
mAb array using a continuous flow microspotter (CFM) (Wasatch Microfluidics Inc).
The printed sensor chip was then docked into an surface plasmon resonance (SPR)
imager reader (MX96, IBIS Technologies bv) to perform interaction analysis of an
analyte’s binding towards the entire array of 96 antibodies simultaneously. Epitope
binning experiments were performed using a classical sandwich assay format where
each binding cycle comprised three steps; 35 nM rIsdB was injected for 3 min, 20 mg
ml -1 antibody analyte was injected for a further 3 min, and then the surfaces were
regenerated using a 30-s injection of 75 mM phosphoric acid. Ninety-six mAb analytes
were injected over a 96-mAb array per unattended run. Binding data were analysed in
SPRint software v. 6.15.2.1 and analysed in Wasatch Microfluidics’ binning software
for heat map generation, sorting and node plotting.

Enzyme-linked immunosorbent assay (ELISA). Recombinant Isd proteins and
their variants (purified as described above) or commercially available alpha-toxin
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(Calbiochem) and SEB (Toxin Technologies) at 2 ug ml -1 in PBS were coated di-
rectly onto 96-well Maxisorp, Nunc-immunoplates (ELISA plate, Thermo Scientific)
by incubation overnight at 4 °C. Alternatively, the molecules were captured through
their FLAG tag with a previously coated anti-FLAG antibody (F1904, Sigma-Aldrich)
for 2 h at RT. Following blocking with PBS/1% BSA/0.01% Tween-20 (ELISA buffer)
for one hour at RT, the plates were washed six times with PBS/0.05% Tween-20 on an
automated plate washer. Diluted human serum samples or mAbs serial dilutions in
ELISA buffer where the added and incubated with shaking for one hour at RT. Plates
were washed as above and an HRP-conjugated goat anti-human IgG (H þ L) (Jack-
son Immunoresearch, 109-001-003) diluted 1:15,000 in ELISA buffer was added and
incubation continued with shaking for one hour at RT. After a final wash as above,
the plates were developed by addition of 3,30 ,5,50 -Tetramethylbenzidine (TMB)
peroxidase substrate (KPL) and the colorimetric reaction was stopped by addition of
5% phosphoric acid (Aqua Solutions). Absorption was read at 450 nm on a Spectra
MAX 340 plate reader (Molecular Devices).

Biosensor assay to determine the Hb-blocking effect of mAbs. The anti-IsdB
mAbs were tested for their ability to block the rIsdB/Hb interaction as previously
described17. Briefly, mAbs were captured at 15 mg ml -1 via anti-species sensors (10
min), 32 nM rIsdB was bound (10 min) followed by 1 mM Hb. Anti-species sensors
were regenerated with 75 mM phosphoric acid. An isotype-matched negative control
mAb (against an irrelevant target) was used to assess any non-specific cross-reaction
of rIsdB or Hb.

Cell-based assay to determine the Hb-blocking effect of mAbs. The binding of
human Hb to endogenously-expressed IsdB on S. aureus cells was used to assess the
blocking effect of anti-IsdB mAbs as previously described57 with the following mod-
ifications. The S. aureus DSpA strain was used. The antibodies, at a concentration
of 600 nM, were pre-incubated with S. aureus cells for 10 min at room temperature
before purified human Hb was added to give a final Hb concentration of 150 nM. Fi-
nal detection of Hb was performed by standard Western blotting with a biotinylated
primary antibody (sheep polyclonal anti-Hb, biotinylated, Abcam ab95152, used at
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2 mg ml -1) followed by a streptavidinconjugated secondary reagent (Streptavidin-
IRDye 800 CW, 1 mg ml -1; Odyssey 926–32230, 1:4,000 dilution). A Licor Odyssey
system was used to image the blot and to quantify the band intensities, data were
expressed as per cent of maximum Hb binding in absence of antibodies.

Affinity measurements of anti-IsdB mAbs. Active concentrations of the recombi-
nant IsdB antigens were determined using a calibration-free concentration analysis
on a Biacore T200 biosensor equipped with CM5 sensor chip (GE Healthcare), as
described previously58. This assay relied on the use of a high affinity anti-IsdB anti-
body that could be regenerated easily; thus D1–06 was chosen as the reaction surface
and was amine-coupled onto flow cell 2 at a high density (8,700 RU) to promote mass
transport limited binding. Flow cell 1 was left blank (activated and blocked, without
any protein coupled) to serve as a reference surface. Surfaces were generated with
75 mM phosphoric acid. These experiments returned apparent activities of 31–34%
for both the full-length recombinant IsdB and IsdB NEAT 2 domain, and these ‘ac-
tive’ concentrations were used as input values for the kinetic experiments instead of
the ‘nominal’ protein concentrations (as determined by light absorbance at A280 nm
with appropriate extinction). Kinetic experiments were performed in a running buffer
of PBS/0.01% Tween20 using a one-shot kinetic method59 on a ProteOn XPR36
equipped with GLC sensor chips (BioRad). The surfaces for these experiments were
prepared at 25 °C. Briefly, ligand channels were minimally activated using a 2–3 min
injection of a freshly mixed aqueous solution of 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) and sulfo-N-hydroxysuccinimide (SNHS) at final concentrations
of 1 mM EDC and 0.25 mM SNHS, antibodies were amine-coupled for 3 min at 15
mg ml -1 in 10 mM sodium acetate pH 4.5 buffer, and excess reactive esters were
blocked with a 3 min injection of 1 M ethanolamine pH 8.5. Final amine-coupled
levels ranged from 400–1,000 response unit (RU) per antibody, witho3% variation
along the six spots within each ligand channel. The temperature was then adjusted
to 37 °C to study the interaction of full-length recombinant IsdB or IsdB NEAT2
domain as analytes, which were injected for 3 min along the analyte channels as a
five-membered serial dilution along with a buffer sample to provide an in-line buffer
blank for data processing purposes. The dissociation phase was monitored for up to
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4 h. Alternatively, the interaction analysis was performed in a 36-ligand array format
using a kinetic titration injection methodology, as described previously60. The same
surfaces were also used to study analytes in a short and long injection methodology.
The top analyte concentration used for the kinetic experiments, regardless of the in-
jection method used, was adjusted as appropriate for the antibodies being studied,
and varied from active concentrations of B1 mM (for the weak affinity binders) to
20 nM (for the high affinity binders). Analyte injections were performed in duplicate
and all experiments were repeated on different chips to generate up to three inde-
pendent measurements per interaction. Binding data were analysed using ProteOn
Manager software; the sensorgrams from the reaction spots were interspot-referenced
and double-referenced and fit globally to a simple Langmuir model with mass trans-
port to deduce the equilibrium dissociation constant (KD 1⁄4 kd/ka) for each rIsdB/
antibody binding interaction.

Binding of the germline-reverted antibodies were performed on a Biacore T200
SPR biosensor (GE Healthcare). Briefly, an anti-human Fc sensor chip was prepared
by activating all flow cells of a Biacore CM4 sensor chip with a 1:1 (v/v) mixture of
400mM EDC and 100mM NHS for 7min, at a flow rate of 10 ml min 1. An anti-human
Fc reagent (Southern Biotech 2014-01) was diluted to 50 mg ml -1 in 10 mM sodium
acetate pH 4.5 and injected on all flow cells for 7 min at 20 ml min -1. All flow cells
were blocked with 100 mM ethylenediamine in 150 mM Borate buffer pH 8.5 for 7
min at 10 ml min -1. The running buffer for this immobilization procedure was 10
mM HEPES, 150 mM NaCl, 0.05% (v/v) Tween-20, pH 7.4. Kinetics experiments
were performed at 37 °C using a running buffer of 10 mM sodium phosphate, 150 mM
NaCl, 0.01% (v/v) Tween-20, pH 7.4. Anti-IsdB mAbs were captured on downstream
flow cells (flow cells 2, 3 and 4) at concentrations that ranged from 8 to 20mgml-1 at
a flow rate of 10mlmin-1 for 2 min. Flow cell 1 was used as a blank reference surface.
Following capture mAbs, analyte (buffer, or IsdB) was injected at 30 ml min -1 on
all flow cells for 2 min. Multiple IsdB analyte concentrations were tested. The IsdB
analyte concentrations were 1.6, 8.0, 40, 200 and 1,000 nM. After the analyte injection,
dissociation was monitored for 5 min. Following analyte binding and dissociation all
flow cells were regenerated with three 1-minute injections of 75 mM Phosphoric Acid.
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The double-referenced sensorgrams were fit globally to a 1:1 Langmuir with mass
transport binding model using the Biacore T200 evaluation software.

Crystal structure determination and analysis. IsdB NEAT1 or NEAT2 in complex
with their respective Fabs were subjected to Index (Hampton Research), JCSG þ (Qi-
agen) and PEG/Ion (Hampton Research) crystallization screens using the Mosquito
robot. A number of initial hits were refined using vapour diffusion followed by micro-
batch using Al’s oil (Hampton Research). D2-06-N2 complex crystallized with 20%
PEG 3350 and 0.1 M sodium citrate at pH 5.4. The D2-06-N2 crystal was flash frozen
with liquid nitrogen using mother liquor with 20% glycerol. D4-30-N2 complex was
crystallized with 15% PEG 10 K and 0.1 M Tris pH 8.0, and flash frozen with mother
liquor with 20% ethylene glycol. D4-10-N1 complex crystallized with 17% PEG 3350
and 0.2 M ammonium citrate tri basic pH 7.0, and flash frozen with mother liquor
with 20% glycerol. Data collection was performed at Advance Light Source beamline
5.0.2. (Lawrence Berkeley National Labs). Images collected were indexed and scaled
with HKL2000 (ref. 61), and Phaser62 was used for molecular replacement. The
models were further refined with a combination of Coot 0.7 (ref. 63), CCP4i 6.5.0
(ref. 64), Phenix 1.9 (ref. 65), and autoBUSTER66.

Generation of naı¨ ve IGHV4-39-derived phage antibody library. Blood samples
of 25–50 ml were collected from healthy consented donors and PBMC were isolated
as described earlier. A total of 1.0–1.9 million of CD19 + (1:20 dilution, HIB19),
CD27 (1:20 dilution, O323) na¨ıve B cells were FACS isolated from the PBMC
of each donor. Total RNAs from each donor were individually obtained using the
RNeasy mini kit according to the manufacturing protocol (Qiagen). First strand
cDNA was synthesized using a human IgM heavy chain constant reverse primer (50
-GAAGGCAGCAGCACCTGTGAG-30 ) and a human IgK light chain constant re-
verse primer (50 -TGGAGGGCGTTATCCACCTTCC-30 ) in a reverse transcrip-
tase reaction (SuperscriptIII, Thermo Fisher Scientific). Light chain cDNA from all
donors were pooled and variable kappa light chain genes were amplified as previ-
ously described using the VK family 1–4 primers and JK reverse primers67. Heavy
chain cDNA from each donor was first individually amplified for 20 cycles using an
IGHV4-39 specific leader region primer (50-TTCCTCCTGCTGGTG GCG-30 ) and
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an IgM constant region reverse primer (50 -AAGTGATGGAGTCGG GAAGGAAG-
30). PCR conditions were according to the manufacturing protocol of Pfu Ultra
(Agilent). A uniquely barcoded nesting primer for each donor was generated by
adding nine unique nucleotides combinations, which are the different combinations
of codons encoding for amino acids glycine-glycine-serine, in front of each IGHV4-39
specific forward primer (50-CAGCTGCAGCTGCAGGA GTC-30). The IGHV4-39
VH gene from each donor was then individually amplified for 20 cycles using 2 ml of
first PCR product as template, and the barcoded IGHV4-39 forward primer and JH
reverse primers67. Pooled VK genes and VH genes were then sequentially ligated into
a single-chain Fv antibody phage display vector. SS320 cells (Lucigen) were trans-
formed with the assembled scFv library vector in thirty parallel 50 ml electroporation
reactions according to the manufacturing protocol. The size of the starting library
was ~6 x 10^9. Antibodydisplaying phages were recovered with M13KO7 helper
phage (New England Biolab) according to previously published methods68. Briefly,
overnight phage cultures were spun down at 12,000 g for 15 min. Supernatant was
collected and incubated with 1:5 volumes of PEG 8000/2.5 M NaCl (Teknova) at
room temperature for 20 min. The mixture was then spun down at 15,000 g for 10
min. Supernatant was removed and PBS was added to dissolve the phage pellet. Dis-
solved phage solution was spun down at 15,000 g for 10 min to remove any insoluble
material. Phage supernatant was used immediately or frozen at -80 °C for storage.

Selection of NEAT1 binders from antibody phage library. For panning of phage
library, 2–4 mg ml -1 of recombinant IsdB NEAT1 protein in PBS was first coated
overnight at 4 °C onto 24 wells of a Maxisorp plate. Plates were then blocked with
either Superblock or StartingBlock (Thermo Fisher Scientific). After washing off the
blocking solution with PBS/0.05%Tween, 10^13 phage particles (100 ml per well) in
PBS/1% BSA/0.05% Tween were then incubated with plate-bound NEAT1 protein
overnight at 4 °C in the first round. The amount of phage input were subsequently
reduced to 5 x 10^12 particles in round 2, 1012 particles in round 3 and 5 x 10^11
particles in round 4. Phage incubations for round 2 to round 4 were performed
at room temperature for 2–4 h. After phage incubation, plates were washed with
PBS/0.05%Tween for 5–20 times. Bound phages were recovered by incubating the
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well with 120 ml of 100 nM HCl for 20 min and immediately followed by neutral-
izing with 16 ml of 1 M TRIS pH 9.2. The eluted phages were then used to infect
XL-1Blue (Agilent) cells growing at log phase (OD B0.3–0.6) for phage propagation
and subsequent round of panning68. After four rounds of panning, infected E. coli
were plated on LB carbenicillin plates. For screening, single E. coli colony were picked
and individually inoculated in growth media (2YT/100 ug ml -1 carbenicillin/10^9
M13KO7) overnight at 37 °C to produce phage. Phage cultures were then spun down
and one sixth dilution of the phage supernatant in PBS/0.5% BSA/0.05% Tween was
used in ELISA to test the binding of the phage clone to NEAT1. Phage ELISA condi-
tions were similar to the ELISA conditions described earlier, but anti M13-IgG-HRP
conjugate (GE Healthcare, 27942101) was used as the detection reagent. Clones that
were reactive to IsdB NEAT1 and not binding negative control proteins were then
sequenced. Selected clones with unique HC sequences from different donors were
reformatted as human IgG1 for further testing.

Sequence analysis of NEAT domains of S. aureus IsdB variants. Protein sequences
from 4,152 S. aureus genomes annotated as IsdB were downloaded from the March
2015 release of the PATRIC pathogen database69. Additional filtering was performed
to exclude partial sequences and incorrect protein or taxonomic classification: se-
quences with lengths of outside of the range 645±30 amino acids were excluded as
well as sequences from the isolates S. aureus F87619 and S. aureus M21126. A multiple
sequence alignment of the remaining 4,112 filtered protein sequences was generated
using the MUSCLE algorithm55. The alignment was manually refined for the se-
quences of isolates from S. aureus subsp. aureus E1410, S. aureus RF122 and S.
aureus O11 using Jalview70. The conservation score was computed as the frequency
of the most commonly aligned residue at each position in the alignment. The multi-
ple sequence alignment of the representative NEAT domain sequences was generated
using the MUSCLE algorithm55 with the default alignment parameters.

Data availability. The accession number for the structures of D2-06-N2, D4-30-N2,
and D4-10-N1 in the Protein Data Bank are 5D1Q, 5D1X and 5D1Z, respectively.
The data that support the findings of this study are available within the article or
from the corresponding authors on request.
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3.4 Polymorphism in human adaptive receptor

repertoire segments

Multiple efforts have been made to characterized the allelic polymorphism of the hu-
man V(D)J segment loci. One effort attempted to apply analysis to the 1000genomes
project data to generate a polymorphim database. While in general we consider this a
useful strategy, the resulting approach produced a degree of novel alleles that was not
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consistent with the allele frequencies obtained when analyzing individual repertoires
or long-range sequencing of individual haplotypes. We wrote the following response to
the publication to as a means of generating a dialog about best practices in populating
a new generation of allele variation databases for immunology.

It was with great interest that we read the recently published article by Yu et
al. (1), which proposes a solution to the problem of building complete and accurate
databases of germline Ig (IG) and TCR genes and alleles. This highlights one of the
most formidable challenges in the immunogenetics field, as it has become apparent in
recent years that existing germline databases (GLDB) are neither complete (i.e., lack
existing alleles) (2–7) nor accurate in some cases (i.e., contain nonexisting alleles) (8).
The impacts of this problem have most prominently come into focus in the context
of IG/TCR expressed repertoire sequence datasets, the analysis and interpretation
of which critically depend on the use of accurate GLDBs. Indeed, recent GLDB im-
provements via the inclusion of previously undetected IG alleles in repertoire sequence
analysis have demonstrated the potential for direct consequences on human health
research (9). In this comment, we enumerate some difficulties inherent in employing
the data used by Yu et al. (1) to build a GLDB, and argue that a broad-based collab-
orative effort using a variety of data types is needed to achieve the goal of a complete
yet reliable GLDB.

In their article (1), the authors develop a pipeline for identifying novel IG/TCR
alleles from single nucleotide polymorphism (SNP) genotype data, and apply it to
diverse population samples of the 1000 Genomes Project (G1K) (10–12) to build
“Lym1K,” a GLDB covering the human TCR β (TRB), TCR α (TRA), IGH, and IGK
and IGL, summarized as “IGL” chain loci. Across the variable (V), diversity (D) and
joining (J) genes in these loci, the authors report the discovery of 8750 germline alleles
not currently curated in the international ImMunoGeneTics information system (13,
14). At face value, this finding is profound, and suggests potential for augmenting
IG/TCR GLDBs using existing or newly generated genotype data. However, we
are concerned about the accuracy of the underlying data, and the fact that erroneous
genotypes/haplotypes used as input will result in incorrectly inferred IG/TCR alleles.
We argue that users of such an approach should exercise due caution.
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There are at least three potential caveats concerning the use of G1K data and sim-
ilar short-read sequencing datasets for variant discovery, genotyping, and the down-
stream inference of novel IG/TCR alleles. These include:

1) the repetitive nature and structural complexity of IG and TCR loci;
2) the unknown extent of haplotype diversity and prevalence of large copy number

variants (CNVs) involving genes in these regions; and
3) the use of source material derived from immortalized B cell lines.
The variant calls produced by G1K are only as reliable as the underlying short-read

sequencing technologies used. Mapping of short-read data (for G1K Phase 3, reads
can be as short as 70 bp) can be confounded in complex genomic loci (15–17), such
as IG and TCR, which are characterized by a highly repetitive sequence architecture
and extensive haplotype diversity (5, 18–23). Each of the IG and TCR loci consist
of ∼40 or more phylogenetically related functional/open reading frame V, D (in IGH
and TRB), and J genes, which exhibit high sequence homology that in some cases can
reach 100% (e.g., for alleles at IGHV3-30 and related paralogs) (13, 14). Importantly,
due to the fact that germline allele databases are incomplete, the degree of “allele
sharing” between genes within IG/TCR loci is not fully understood. This would
be expected to be a serious issue in the IGK locus, as nearly every V gene resides
within two tandem duplication blocks, between which direct gene conversion events
have been described (18). The repetitive nature of sequences in these loci creates the
potential for mismapping of reads and ultimate assignment of variants to the incorrect
genes.

A second critical consideration is that variant calls made using standard short-
read data and bioinformatics pipelines are restricted to loci present in the genome
reference assembly used for read mapping. This is important, as haplotype variability,
in the form of large CNVs and SNPs is common in the IG and TCR loci (5, 18–23).
Therefore, a single reference assembly poorly represents standing haplotype variation
in any given population being screened. As noted by Yu et al. (1), there are in
fact many genes missing from the current reference assemblies (e.g., GRCh37 and
GRCh38), and thus by definition, it is impossible to make reliable genotype and
allele calls for these genes. In total, using IGH as an example, there are at least 16
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known functional/open reading frame V genes and >220 kbp of genomic sequence
present in haplotypes in the human population that are not represented in GRCh37
(the assembly used by G1K for Phase 3 read mapping and variant calling) (5). In some
populations, these alternate haplotypes represent the major allele, indicating that the
majority of samples screened would carry a sequence absent from GRCh37 (5). The
technical effects of this “missing sequence” are not known, but it would be expected
that reads representing alternate haplotypes and genes in any given individual would
have the potential to be incorrectly mapped to off-target genes that are present in
the reference. Directly related to this, the presence of CNVs in a sample can cause
other problems for short-read mapping and downstream genotype inference. For
example, heterozygous gene deletions (hemizygotes) can masquerade as homozygotes
for a given SNP or coding allele, whereas paralogous sequence variants between close
gene duplicates can result in artifactual heterozygote calls (24, 25).

Furthermore, it is important to take the source of genomic DNA used by a study
into account. In the case of G1K, DNA was extracted from lymphoblastoid cell lines,
i.e., B cells immortalized by EBV. Therefore, a fraction of the IG loci in these lines
has undergone V(D)J recombination, which can lead to a reduction or complete loss of
reads (lower read depth) overlapping proximal V, D, and distal J genes within a given
sequencing library (5, 26). Low read coverage can directly impact the reliability of
variant discovery and genotype calling (11, 12). Additionally, hypermutated memory
B cells can be the target of EBV transformation (27), which will result in the presence
of non-germline IG gene mutations in DNA isolated from lymphoblastoid cell lines,
resulting in potential false-positive allele calls; evidence of somatic hypermutation
at IG genes that have undergone V(D)J recombination has been directly observed
in G1K samples (5). Although not directly applicable to G1K data, it should also
be noted that similar issues concerning the reliability of genotyping due to somatic
rearrangements have been reported for TCR loci using DNA isolated from blood (28).
Requiring variants to be present in multiple individuals or conducting analyses in
family-based datasets could potentially help mitigate this issue, but the reliability of
such an approach would need to be demonstrated, as somatic mutations at hot-spots
likely recur.
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Unfortunately, because population and genomic resources in the IG and TCR
gene regions remain limited, the true impacts of the potential caveats laid out above
remain difficult to assess. However, as part of the Phase 3 data release, G1K has used
quality control metrics from low-coverage data across >2,600 human samples to di-
rectly assess the “accessibility” of every base in the genome to sequencing technologies
used currently by the consortium [see Refs. (12) and (29)]. Using this approach, cer-
tain bases have been masked as having potentially higher false-positive and -negative
variant call rates. Using IGH as an example, >25% of bases within the coding exons
of 62/83 IGHV, D, and J genes in GRCh38 fall within this category, even when using
the least stringent (“pilot”) criteria established by G1K. Although this does not by
definition mean calls made in these regions are incorrect, we would argue it implies
that their reliability is difficult to assess at this time. Indeed, G1K found that vari-
ant calls at these masked bases also had higher failure rates using alternative variant
discovery/genotyping methods (12).

Taken together, the caveats discussed above suggest that databases constructed
from alleles inferred from short-read genomic data should be carefully vetted, bearing
in mind that even a single incorrect genotype within an IG/TCR gene can impact the
reliability of haplotype phasing and allele inference for that gene. Therefore, we urge
users to critically examine and consider both the features of the data underlying a
given allele call, such as read lengths, coverage depth, library construction methods,
cohort sample size, and the source of DNA, as well as the bioinformatics methods
and the genic and sequence content of the genome reference assembly used for read
mapping and variant calling. It is likely that all of these will impact the reliability
of the allele database constructed, and importantly, may be more or less critical
depending on the locus or gene/allele in question.

Finally, in addition to understanding factors related to the underlying data used,
systems for thorough validation and benchmarking should be implemented to ensure
low error rates. Such efforts have proven critical for the development of allele calling
and genotyping methods using short-read data in other immune loci of comparable
complexity (e.g., KIR and HLA) (30, 31). A basic cross-referencing of variant calls
to other databases may be a useful strategy in certain circumstances, but would be
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expected to be problematic if variants in that database are not mutually exclusive
from the variant call set used for allele inference. For example, dbSNP (32), used
by Yu et al. (1) for filtering of calls from their pipeline, contains SNPs directly
submitted by G1K, and thus an overlap of G1K IG/TCR variants and dbSNP would
be expected, not offering an unbiased form of validation. Furthermore, if a database
cross-referencing approach is used, the secondary database must be reliable, and may
itself require careful filtering. For example, there are 62 G1K SNPs across 24/44
IGHV genes (GRCh37) that are cataloged by dbSNP, but are flagged as “suspect”
variants potentially representing false-positives.

We hope that this debate can motivate a concerted effort on the part of our com-
munity to find sustainable strategies to improve and complement the current IG/TCR
GLDBs. Over the coming years, in addition to population genome sequencing efforts
by short-read platforms, data from long-read technologies and inferred alleles from
expressed repertoire sequencing efforts will become generally available. It is clear that
a multitude of approaches can and will be taken to create reference GLDBs from these
data, but we should recognize that the quality of a GLDB cannot be measured by its
allele count. Instead, we consider it to be the most productive path to set our current
focus on the creation of GLDBs containing high-confidence, independently confirmed
genes/alleles, even if stringent confirmation requirements result in the exclusion of
rare alleles. In addition, the community should strive to develop statistics that de-
scribe the uncertainty associated with an individual allele to provide a transparent
measure for users. Ultimately, however, it is worth considering that studies requiring
the precise germline sequence of a specific donor may necessitate direct sequencing
of the individual, instead of relying on a reference database. Ideally, in line with
the principles of the Reproducible Research Standard (33), both databases and their
underlying datasets should be available under a free and open licensing scheme to fa-
cilitate further development. Finally, it is important to note that the issues discussed
here are not limited to human GLDBs, and will apply to other species, including
murine and nonhuman primate models (7, 34). We are convinced that a community
effort toward achieving these goals has the potential to greatly enhance the analysis of
repertoire sequencing studies across the field and provide more detailed and reliable
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insights into adaptive immune responses in the context of infection, autoimmunity,
and malignancies.
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Chapter 4

Discoveries in natural repertoires

4.1 Introduction

Repertoire sequencing and analysis technologies have availed the adaptive immune
system to direct inspection. In this chapter, we present the results of a series of
studies made possible by reading the repertoire.

4.2 B cell exchange across the blood-brain barrier in

multiple sclerosis

In multiple sclerosis (MS) pathogenic B cells likely act on both sides of the blood-brain
barrier (BBB). However, it is unclear whether antigen-experienced B cells are shared
between the CNS and the peripheral blood (PB) compartments. We applied deep
repertoire sequencing of IgG heavy chain variable region genes (IgG-VH) in paired
cerebrospinal fluid and PB samples from patients with MS and other neurological
diseases to identify related B cells that are common to both compartments. For the
first time to our knowledge, we found that a restricted pool of clonally related B
cells participated in robust bidirectional exchange across the BBB. Some clusters of
related IgG-VH appeared to have undergone active diversification primarily in the
CNS, while others have undergone active diversification in the periphery or in both

357
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Figure 4.1: In MS, B cell receptors are subject to extensive intrathecal SHM. Nu-
cleotide sequences, represented by clusters shown in Figure 1, were selected from the
IgG-VH sequence database and used to generate lineage trees using IgTree software
(see Methods). (A–E) Representative trees for CSF-restricted clusters for patients
(A) MS-1, (B) MS-3, (C) MS-4, (D) MS-6, and (E) MS-5. The corresponding IGHV,
IGHJ, and most com- mon H-CDR3 AA sequences are listed in Supplemental Table 2.
In the lineage trees, each round node represents at least one unique IgG-VH sequence
ranging from at least the 5´ end of H-CDR1 to the 3´ end of H-CDR3; larger nodes
represent up to hundreds of identical sequences. Putative germline sequences were de-
termined using SoDA (https://dulci.org/soda/; ref. 36) and are labeled as black, and
hypothetical intermedi- ates calculated by IgTree are labeled as beige. The numbers
represent mutational steps between nodes; only mutational steps >1 are indicated;
thus, unlabeled branches represent a single mutation. Triangular nodes contain 2 or
more singleton sequences in leaves.
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compartments in parallel. B cells are strong candidates for autoimmune effector cells
in MS, and these findings suggest that CNS-directed autoimmunity may be triggered
and supported on both sides of the BBB. These data also provide a powerful approach
to identify and monitor B cells in the PB that correspond to clonally amplified pop-
ulations in the CNS in MS and other inflammatory states.

4.2.1 Copyright

HV Büdingen, T Kuo, S Marina, C Belle, L Apeltein, J Glanville et al. “B cell
exchange across the blood-brain barrier in multiple sclerosis.” The Journal of Clinical
Investigation 122.12 (2012): 4533.

4.3 Seroconversion signatures and convergent

antbodies in influenza

B cells produce a diverse antibody repertoire by un- dergoing gene rearrangements.
Pathogen exposure induces the clonal expansion of B cells expressing antibodies that
can bind the infectious agent. To assess human B cell responses to trivalent seasonal
influenza and monovalent pandemic H1N1 vaccina- tion, we sequenced gene rearrange-
ments encoding the immunoglobulin heavy chain, a major determi- nant of epitope
recognition. The magnitude of B cell clonal expansions correlates with an individ-
ual’s secreted antibody response to the vaccine, and the expanded clones are enriched
with those expressing influenza-specific monoclonal antibodies. Addition- ally, B cell
responses to pandemic influenza H1N1 vaccination and infection in different people
show a prominent family of convergent antibody heavy chain gene rearrangements
specific to influenza antigens. These results indicate that microbes can induce spe-
cific signatures of immunoglobulin gene rearrange- ments and that pathogen exposure
can potentially be assessed from B cell repertoires
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4.3.1 Introduction

Human B cells generate a vast diversity of antibodies by rearranging the genes en-
coding immunoglobulins V (variable), D (diversity), and J (joining) in their genomes
( Tonegawa, 1983 ). For decades, most monitoring of human antibody responses
to infections or vaccines has been performed by serological measurements that can
evaluate antibody specificities but has provided only limited insight into the under-
lying changes in clonal populations of B cells, or the gene rearrangements responsible
for the antibodies. More recently, single-cell sorting and cloning of antibody genes,
as well as optimized culture systems and hybridoma generation, have given greater
insight into the specificity and breadth of reactivity of the antibodies produced by
influenza-specific B cells and molecular under- standing of the genes encoding such
antibodies ( Li et al., 2012; Wrammert et al., 2011; Wrammert et al., 2008; Yu et al.,
2008 ). High-throughput DNA sequencing methods now permit detailed monitoring
of B cell repertoires in humans and are starting to be applied extensively to the study
of vac- cine responses ( Boyd et al., 2009; DeKosky et al., 2013; Jiang et al., 2013;
Krause et al., 2011; Liao et al., 2011; Wu et al., 2011 ).

It is largely unknown whether different people use similar anti- body genes in their
responses to common pathogen-associated antigens. With a few exceptions, such as
the antibody responses to repetitive polysaccharide antigens ( Ademokun et al., 2011;
Park et al., 1996; Scott et al., 1989; Silverman and Lucas, 1991 ), there has been little
evidence of similarity between different humans’ responses to most pathogens. Indeed,
anti- bodies would themselves be expected to exert a selection pres- sure upon the
pathogens they target and thus cause pathogens to avoid expressing antigens that are
recognized by human anti- body genes.

We conducted a detailed study of B cell clonal expansions in response to influenza
vaccination and used deep sequencing to identify within a week of vaccination clonal
expansion signa- tures that correlate with the magnitude of the serological response
in vaccinated individuals. Comparison of expanded clones to influenza-specific plas-
mablasts identified by single- cell sorting from the same subjects demonstrated sub-
stantial overlap between these populations. More surprisingly, we iden- tified shared
convergent antibody responses to the H1N1 2009 influenza strain among different
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people in response to both vaccination and infection. These results represent an ex-
ample of a signature in immunoglobulin gene rearrangements specific to the pathogen
that elicited them and suggest that features of an individual’s history of pathogen
exposure can be identified by sequence analysis.

4.3.2 Results

Deep Sequencing of Rearranged IGH from the Trivalent Inactivated Seasonal In-
fluenza Vaccine Response

To take an overview of B cell responses induced by vaccination, we carried out deep
sequencing of immunoglobulin heavy chain (IGH) from peripheral-blood B cells of 14
healthy young individ- uals vaccinated with the 2007 or 2008 trivalent inactivated
seasonal influenza vaccine (TIV) ( Moody et al., 2011 ). Seven indi- viduals were
“seroconverters,” who raised at least a 4-fold in- crease in titer above baseline to two
or more vaccine antigens, as measured by ELISA against purified hemagglutinins
(HAs). The other seven individuals were “nonseroconverters,” who failed to increase
their vaccine-specific antibody to meet these criteria ( Table S1 , available online) (
Moody et al., 2011 ).

Twelve replicate IGH libraries were prepared from inde- pendent genomic DNA
template aliquots from cryopreserved peripheral-blood mononuclear cells for each in-
dividual at each of three time points: prevaccination, day 7 postvaccination, and day
21 postvaccination ( Figure 1 A). On average, 35,436 IGH sequences were analyzed
for each individual. Sequencing depth was relatively evenly distributed across the
time points; there were an average of 11,661 IGH sequences prevaccination, 12,200 at
day 7, and 11,564 at day 21.

B Cell Clonal Signatures from Deep Sequencing Correspond to Serological Mea-
sures of Vaccine Response

Clonally related B cell lineages were identified by the presence of identical, or
near identical, IGH in independent replicate sequence libraries from genomic DNA
for each time point. This approach ensures that high expression of antibody gene
mRNA in individual cells, or amplification bias, is not misinter- preted as evidence
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Figure 4.2: Quantitation of clonal B cells in the blood following vaccination predicts
seroconversion (A) Replicate IGH libraries were generated from peripheral blood B
cells for 14 individuals (Table S1) at three time points: pre-vaccination (red arc), day
7 (green arc) and day 21 post- vaccination (purple arc). Replicates are shown as bands
within each arc and lines connect clonally related VDJs from independent replicates.
Detailed IGH repertoires for each individual are shown in Figure S1A. Figure S1B
presents criteria for definition of clonal lineages. (B) Normalized clonality index
scores; pre-vaccination (red), 7 days (green) and 21 days post-vaccination (purple).
(C) Plasmablast percentages of total B cells (Table S3); pre-vaccination (red) and
at days 7 (green) and 21 (purple) post-vaccination. (D) Correlation between metrics
and serological antibody response.
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of clonal B cell populations. Most sero- converters showed a response with one to
three larger clones and variable numbers of smaller clones, although subject 7024, who
showed a predominance of smaller lineages, was an exception. The median number
of expanded clones for sero- converters at day 7 was 69 (range 39–92), whereas the
median for nonseroconverters was 25 (range 8–85).

To compare the clonal signatures between samples, we used a previously described
clonality index ( Wang et al., 2014 ). The clonality index is a scale-independent nor-
malized measure that reflects the probability that two independent sequences derive
from clonally related B cells ( Figure 1 B). Each of the seroconvert- ers showed a
prominent increase in clonality on day 7 in compar- ison to prevaccination ( Movie S1
). Measured changes in clonality from prevaccination to day 7 ranged from 3.38-fold
to 247.57- fold among seroconverters. Nonseroconverters showed a mixture of mod-
estly increased (four individuals) and modestly decreased (three individuals) indices
( Figure 1 B).

The change in B cell clonality by day 7 was positively cor- related with the fold
change in antibody titer against vaccine HA antigens, as measured by ELISA 21
days postvaccination (Spearman r = 0.8454, p value = 0.002; Figure 1 D). Nonsero-
converter 7016 showed a partial response with a 1.58-fold titer increase for combined
TIV antigens and a 2.98-fold increased clonality index, but there was a strong response
to one vaccine component (5.39-fold change to A/Brisbane/10/2007/H3).

Plasmablast counts in blood after vaccination have been re- ported to correlate
with serological responses ( Liao et al., 2011; Sasaki et al., 2008 ). Day 7 plasmablast
frequencies ( Table S3 ) in the samples studied here showed significant correlation
with the clonality index (r = 0.8545, p = 0.002, Figure 1 D) and a slightly weaker
correlation with changes in serum antibody titer (r = 0.7182, p = 0.02, Figure 1
D). However, the difference be- tween these two correlations did not meet statistical
significance (p = 0.1214, Steiger’s dependent variable correlation) ( Steiger, 1980 ).
Consistent with prior literature, prevaccination titers were negatively correlated with
vaccine-stimulated titer changes ( Figure 1 D) ( Sasaki et al., 2008 ).

Clones from IGH Deep Sequencing Comprise a Subset of Antigen-Specific Plas-
mablasts
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To directly evaluate the influenza specificity of the detected B cell expansions and
assess whether these represent members of the plasmablast pool, we compared the
data to IGH from flow-sorted plasmablasts isolated from the same day 7 samples for
five of the seroconverters (7001, 7004, 7014, 7021, and 7024). A total of 398 sorted
plasmablasts were expressed as recombi- nant monoclonal antibodies (mAbs); their
antigen specificities were evaluated as part of a previous study ( Moody et al., 2011
), and 59.8% were influenza reactive.

Analysis revealed that 24.4% of sorted plasmablasts be- longed to clonally ex-
panded lineages containing IGH identified by sequencing ( Figure 2 A; Table S2 ).
Sixty-six percent of the plasmablast-derived IGHs in these lineages were from influ-
enza HA-binding mAbs ( Figure 2 B; Table S2 ). Conversely, 10.2% of the day 7
expanded clones were in lineages that included plasmablast IGHs. Subject 7001, who
contributed 247 mAbs ( Moody et al., 2011 ), shared 19.6% of day 7 clonally expanded
B cell lineages with plasmablast IGHs, and 82.4% of these included influenza-specific
mAbs ( Figure 2 B; Table S2 ). This indicates that at day 7 postvaccination, there
is partial overlap of both the total population of clonally expanded B cells and plas-
mablasts sorted on the basis of their immunophenotype.

Somatic Hypermutation of Vaccine-Stimulated B Cell Repertoires
Seroconverters and nonseroconverters differed in the somatic mutation of ex-

panded B cell clones at day 7 postvaccination (mean mutation was 6.4% and 4.3%,
respectively, p = 0.0041, t test). Prior to vaccination, the groups shared similar levels
of mutation in expanded clones (3.2% and 3.4%, p = 1.00) and non- clonal IGHV
sequences (1.5% and 1.3%, p = 0.8048). At day 21, the expanded lineages of the
seroconverters retained a higher somatic point mutation (5.7%), whereas nonserocon-
verters returned to the prevaccination mutation frequency of 3.5% (p = 0.1649).

Time Course of Response to H1N1 Single Antigen Vaccination
To obtain a more detailed view of the dynamics of the B cell response to influenza

vaccine in a somewhat simpler vaccination context, we undertook IGH sequencing
from a daily time course of the response to the single-agent pandemic H1N1 2009
influ- enza vaccination in an additional healthy subject (BFI-278) ( Fig- ure 3 A;
Movie S2 ). Prior to vaccination, few clonally expanded B cell lineages were detected
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Figure 4.3: Antigen specificity of vaccine-induced B cell clonal populations (A) B
cell lineages with members from mAbs derived from day 7 sorted plasmablasts (blue
arc) and deep sequenced IGH from peripheral B cells prior to (red) and at days
7 (green) and 21 (purple) post TIV vaccination. Lines join lineage members. (B)
Antigen binding of plasmablast-derived mAbs (Table S2); influenza antigen (green),
unknown/untested (yellow), non-influenza antigen (red). Arcs are ‘zoomed’ to shared
lineages. 7014 had no shared lineages.
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(five expanded clones, on average 0.06% of the total). After vaccination, a clonal
response peaked at day 7 and decreased toward prevaccination levels by day 10 (
Figure 3 A). Overall, 256 clonal lineages were detected postvac- cination; 11 lineages
were strongly induced by vaccination, and each contributed more than 0.1% of the
total rearrangements. Vaccine-induced clonal lineages reached their peak at day 7,
when they accounted for 7.1% of total IGH. Many of the vac- cine-induced expansions
continued to be detected by day 9, although some were observed only at a single
time point ( Fig- ure 3 A). Clonal lineages utilizing IGHV3-7 paired with IGHJ6
were overrepresented in the vaccine-induced proliferation, and 6 of the 11 prominent
lineages used these genes with an 18 amino acid CDR3 ( Figure 3 B).

The postvaccination clonally expanded IGHs were somatically mutated, and mem-
bers of the 11 prominent lineages showed an average of 5.68% IGHV mutation ( Figure
3 B). The full IGH repertoire detected in this individual had a mean IGHV mutation
level of 1.18%.

Identification of Convergent IGH Rearrangements in the H1N1 Vaccine Response
The dominant IGH lineages in BFI-278’s response to single- antigen H1N1 vac-

cination ( Figure 3 ) had stereotyped features: IGHV3-7, IGHJ6, and an 18 amino
acid CDR3. These lineages were compared to previously reported H1N1-responding
B cell repertoires. Surprisingly, we observed response convergence with constrained
CDR3 sequences seen in two other studies ( Wrammert et al., 2011; Krause et al.,
2011 ). The CDR3 se- quences of 4K8 and 2K11 ( Krause et al., 2011 ) differed from
member BFI-278’s dominant expansion by a single amino acid residue ( Figures 4 A
and 4B; Table S4 ). 48K and 2K11 were iso- lated from one individual after pandemic
H1N1 vaccination, and both had activity against 2009 H1N1 and human and swine
influenza strains from 1918, 1930, 1976, and 1977 by hemagglu- tination activation
inhibition (HAI) ( Krause et al., 2011 ). Paired with the light chain of antibody 4K8,
a mAb generated from the IGH isolated from BFI-278 showed HAI with a titer of
20 in tripli- cate assays against the influenza A H1N1 California/7/09 strain, but no
detectable activity against the other strains in the panel.

Stereotypic IGHs were also present in H1N1-stimulated clones from a single donor
15 days after acute pandemic H1N1 infection ( Wrammert et al., 2011 ). One mAb,
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Figure 4.4: Time course of B cell clonal expansions induced by inactivated H1N1
vaccine (A) Vaccine induced B cell clonal lineage relationships during H1N1 vac-
cine response (complete IGH repertoires at Figure S2). Each arc represents a post-
vaccination time point sub-divided into expanded (blue) and unexpanded (yellow)
compartments. Lines join lineage members at later time points. Orange lines indi-
cate that a lineage was strongly induced at the originating time point (> 0.1% of
total IGH). (B) IGHV percentage mutation for strongly induced lineages. Median
(red line), quartiles shown as box and whiskers and points are jittered to prevent
over-plotting.
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70-1B03, differed from IGH isolated from BFI-278 by two CDR3 residues and was
reported to be cross-reactive between pandemic H1N1 and the 2009 annual TIV vac-
cine antigens ( Figure 4 C) ( Wrammert et al., 2011 ). Two further IGHs, 70-5E04H
and 70- 1F05H, were derived from H1N1-infection-induced plasma- blasts but had no
detectable binding to the panel of antigens tested ( Wrammert et al., 2011 ).

We examined somatic mutations in IGHV to assess additional evidence of molec-
ular convergence in these antibodies. Overall, the IGHV of convergent H1N1-specific
lineage members from BFI-278 showed an average of 5.24% mutation, and the most
highly mutated sequence showed 12.27% mutation. Somatically mutated positions
in CDR1 and CDR2 were shared with 4K8 and 2K11 mAbs ( Figure 4 D). Shared
substitutions could result from intrinsic mutation hotspots favoring mutation at these
locations. This is very unlikely for the observed convergent mutations, as the CDR1
and CDR2 mutations in the BFI-278 H1N1 antibody sequences were uncommon in
two unrelated, nonvaccinated data sets: IGHV3-7 IGH from the prevaccination of 14
TIV 2007 and 2008 subjects ( Figure 4 D) and IGHV3-7 IGH from 27 healthy sub-
jects who had not been recently vaccinated ( Wang et al., 2014 ) (both p < 0.0001,
Pearson’s dependent groups). Impor- tantly, the two nonvaccination data sets were
highly similar in their mutations (r = 0.9311), and both were distinct from the H1N1
lineages (p = 0.1794). Evaluation of mutated positions in mAbs 48K and 2K11 for
whether they were more likely to have been drawn from the mutation distribution of
the H1N1 lineage or from the two nonvaccination data sets showed that 4K8 car- ried
mutations similar to those of the H1N1 lineage (log-likelihood ratio =

7.98 for H1N1 and
22.59 for the IGHV3-7 background), whereas 2K11 did not show higher similarity

to either distribution (
41.97 for H1N1 and
42.52 for the IGHV3-7 background).
The response of BFI-278 to the next year’s 2010 TIV, which included pandemic

H1N1, was also examined. The 2010 TIV response included 28 IGHs with stereotypic
features at day 7 postvaccination (0.36%). These differed from the prior year’s stereo-
typic clones by at least four CDR3 residues, from the H1N1-stimulated B cells from
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Wrammert et al. (2011) by more than five positions, and from the H1N1-specific
mAbs from Krause et al. (2011) by six positions. The 2010 TIV IGH also lacked
convergent somatic mutations and therefore appeared to represent distinct B cell
clones.

IGH Rearrangements with Stereotypic Features Prior to 2009
To evaluate whether the convergent B cell clones were present at high frequencies

in BFI-278’s repertoire prior to pandemic H1N1 antigen exposure, we studied previ-
ously reported sam- ples collected 14 months apart in 2006 and 2008 ( Boyd et al.,
2009 ). Only four IGHs from 2006 (0.03%) and ten IGHs from 2008 (0.06%) used
IGHV3-7 and IGHJ6 with an 18 amino acid CDR3. The CDR3s of the pre-2009 IGHs
differed from the H1N1 response clones by at least six amino acids and appeared to
be unrelated.

The contribution of stereotypic IGH chains in independent populations was also
analyzed in 151,217 unique IGHs pooled from IGH sequencing of 27 additional adults
(2008 and 2009) ( Wang et al., 2014 ). IGH using IGHV3-7 and IGHJ6 repre-
sented 1.01% of total rearrangements, and 115 of these IGHs had an 18 amino acid
CDR3. The 115 rearrangements did not share similar CDR3 sequences with IGH
from BFI-278’s H1N1 vaccination; all had less than 85% sequence identity. Among
496,104 IGH sequences from the 14 TIV 2007 and 2008 subjects, a single IGH (sero-
converter 7014, 2008 TIV) differed from a rearrange- ment from individual BFI-278’s
H1N1 2009 response by one amino acid residue. Examination of over 500,000 IGH
sequences collected from 41 individuals prior to 2009 therefore revealed only a single
example of the convergent IGH seen in 2009 in BFI-278 and in the Wrammert et al.
(2011) and Krause et al. (2011) studies, indicating that antibody lineages capable of
binding the pandemic H1N1 strain were indeed present in human B cell repertoires
but were relatively rare.

4.3.3 Discussion

Deep sequencing of immunoglobulin libraries enables tracking of known antigen-
specific B cell populations ( Liao et al., 2011; Liao et al., 2009; Wu et al., 2011
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Figure 4.5: Convergent immunoglobulin heavy chain rearrangements identified in
H1N1 vaccine responses in different individuals Multiple sequence alignment of closely
related stereotypic H1N1 clones isolated from difference sources. Nucleotide positions
are labeled when they differ from the germline genes (top of each block). Nucleotides
inferred to be derived from non-templated nucleotide addition during V(D)J rear-
rangement are not colored. Amino acids positions are labeled when they differ from
those in the mAb (bottom of each block). Each block is labeled with the germline,
the conserved sequence group (CSG) and the mAb. Members of CSGs are detailed
in Table S4. (A) IGH related to 4K8 mAb isolated (Krause et al., 2011) (B) IGH
related to 2K11 (Krause et al., 2011) (C) IGH related to CDR3s previously identified
by Wrammert et al. (Wrammert et al., 2011). (D) The percentage of total sequences
with CDR1 and CDR2 somatic mutation amino acid substitutions in convergent H1N1
clones (upper) compared to 4,784 IGH using IGHV3-7 from the pre-vaccination reper-
toire of 14 subjects pre-pandemic (lower). The germline sequence is depicted in the
white boxes (middle). Asterisks (*) mark amino acid substitutions shared with mAbs
48K or 2K11 (Krause et al., 2011).
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). In addition, replicate libraries of B cells from an individual can identify clonally
expanded popula- tions arising in response to immune stimuli, such as vaccination or
infection. Recently, influenza vaccine responses in humans have been associated with
increased numbers of plasmablast immunophenotype B cells in the blood; these B
cells peak at approximately 7 days postexposure, and the majority express antibodies
specific to influenza antigens and often feature signif- icant clonal expansion of par-
ticular plasmablast lineages ( Brok- stad et al., 1995; Cox et al., 1994; Halliley et al.,
2010; Sasaki et al., 2007; Wrammert et al., 2008 ). Prior deep-sequencing analysis of
responses to influenza vaccination has identified sequences present at elevated levels
in libraries amplified from cDNA of peripheral-blood B cells ( Jiang et al., 2013 ).
Our results reveal a strong correlation between the levels of B cell clonal expansion
detected in the blood and the serological response to vaccination. Vaccine-induced
clonal lineages measured by replicate library sequencing peaked at day 7 after having
increased 118-fold over background lineages and persisted at detectable levels until
about 2 weeks postvaccination.

To evaluate the antigen specificity of the clones detected by sequencing, we com-
pared our data to the sequences of mAbs generated from plasmablasts at day 7
postvaccination individ- uals who seroconverted to seasonal TIV ( Moody et al., 2011
). Almost 25% of the IGH utilized by the plasmablast-derived mAbs shared clonal
lineages with those we identified, and 66% of these were specific to influenza. This
cross-identification confirms that a relatively simple evaluation of clonal expansions in
the vaccine response by IGH repertoire sequencing highlights antigen-specific lineages.
In addition, the incomplete overlap suggests that there are low-frequency plasmablast
lineages that are not identified as clonally expanded and that there may be other clon-
ally expanded B cell populations that do not have a plasmablast immunophenotype,
such as influenza-specific memory B cells, which have been previously reported to
signifi- cantly increase their levels in the blood at day 7 after influenza vaccination (
Wrammert et al., 2008 ).

Unexpectedly, the response to monovalent H1N1 vaccination showed striking
stereotypic features (use of IGHV3-7, IGHJ6, and an 18 amino acid CDR3) in the most
prominent postvaccination clonally expanded B cell lineages. We looked for evidence
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of this stereotypic IGH response in other individuals responding to influenza vaccina-
tion or infection and expected that the likeli- hood of finding “convergent evolution” in
antibody responses to influenza would be low, given that the immunoglobulin reper-
toire is potentially very large, that deep sequencing still permits relatively shallow
sampling of each individual’s repertoire ( Boyd et al., 2009; Glanville et al., 2011 ),
and that selection pres- sures on influenza strains avoid common immune responses.
To our surprise, IGH from two independent H1N1 response studies ( Krause et al.,
2011; Wrammert et al., 2011 ) shared the stereo- typic features. The CDR3s of these
rearrangements differed by only 1 or 2 of 18 amino acids, highlighting a striking de-
gree of convergence in the antibody responses in these unrelated indi- viduals. Paired
with the light chain from the previously reported 48K mAb ( Wrammert et al., 2011
), a recombinant mAb of the BFI-278 stereotypic IGH lineage showed HAI specific to
the pandemic H1N1 strain. Notably, in a search of over 500,000 IGH sequences from
the B cell repertoires of 41 subjects studied from 2006 to 2009, we identified a single
IGH with the same convergent features, highlighting the low prior frequency of such
clones that are preferentially stimulated by the 2009 pandemic H1N1 influenza strain
( Brokstad et al., 1995; Sasaki et al., 2007 ).

The use of IGH involving IGHV3-7, IGHJ6, and an 18 amino acid CDR3 was
a recurrent pattern of the response of BFI-278 ( Figure 3 ) to successive years of
H1N1 influenza vaccination, but importantly, the stereotyped B cell clones in 2009
were distinct from those that appeared in 2010 after vaccination with TIV containing
the same pandemic H1N1 antigens. This suggests the recruitment of new B cells
with stereotypic IGH chains rather than a recall response dominated by the highest-
frequency members of the prior year’s clones. This favoring of new clones could be due
to the fact that serum antibody derived from the 2009 vaccination decreases restimu-
lation of the dominant 2009 B cell clones but doesn’t prevent stimulation of B cells
that recognize somewhat different epitopes of the viral antigens.

In summary, high-throughput DNA sequencing of peripheral- blood B cells pro-
vides a highly informative measure of clonal expansions, and such a measure corre-
lates with serological vaccine responses. B cell clones that expand after vaccination
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show substantial but incomplete clonal overlap with vaccine- specific single-cell plas-
mablasts. Responses to vaccination with the 2009 pandemic H1N1 influenza strain
revealed a domi- nant pattern of antibody responsiveness that was convergent in
different individuals. Antibodies with convergent features were rare prior to 2009.
Overall, if the detection of convergent anti- body signatures can be generalized to
other antigens and in- fectious diseases, it may be feasible to use IGH repertoire
sequencing to assess an individual’s history of antigenic expo- sures and infections
more broadly (Glanville et al., data not shown). The results also lend some support
to the idea that evolutionary selection of the germline IGH genes may predis- pose the
adaptive immune response to follow common paths of response to common pathogens.
Further evaluation in the context of different vaccines and pathogen infections will
be able to determine whether these findings are the exception or the rule in human
antibody responses.

4.3.4 Methods

Collection of Specimens All subject recruitment was performed with informed con-
sent. The Duke University institutional review board (IRB) approved protocols for
the study of response to 2007 and 2008 seasonal TIV. The Stanford University IRB
approved the study of the 27 additional prevaccination subjects. Subjects re- cruited
at Duke University were given either 2007–2008 or 2008–2009 FluZone TIV (Sanofi
Pasteur) as described in Table S1 and detailed in the Supplemental Information .
Blood was drawn before vaccination and on days 7 and 21 after challenge. Subjects
recruited at Stanford University were 27 healthy individ- uals aged 20–89 years ( Wang
et al., 2014 ). Peripheral-blood samples from these patients were collected prior to
vaccination in two successive years (2008 and 2009). Subject BFI-278, recruited at
Stanford University, was administered the 2009 monovalent inactivated vaccination
to influenza A (H1N1) in January 2010. Blood was drawn before vaccination and
daily on days 4–14 after chal- lenge. Ten months after receiving the monovalent
H1N1 vaccine, BFI-278 was administered a seasonal TIV that included the influenza
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A/California/07/2009- like pandemic H1N1 antigenic component. Blood was drawn
prior to 2010 TIV vaccination and on days 7 and 21 postvaccination.

Sample Preparation and PCR Amplification for Deep Sequencing Peripheral-blood
mononuclear cells (PBMCs) were isolated by centrifugation of blood layered over
Histopaque-1077 (Sigma-Aldrich) and cryopreserved ( Moody et al., 2011 ). Column
purification (QIAGEN) was used for isolating genomic DNA template. IGHs were
amplified from genomic DNA template with the previously described primer design
for 454 instrument sequencing as detailed in the Supplemental Information ( Boyd et
al., 2009 ).

Deep Sequencing of IGH Amplicon library pools were quantified by real-time PCR
(Roche). Sequencing data presented here were derived from the 454 instrument with
the use of Titanium chemistry; long-range amplicon pyrosequencing began from the
“B” primer in the manufacturer’s protocol (Roche). The complete data sets from the
samples generated are available at dbGaP accession number phs000760.v1.p1.

Analysis of Sequence Data Sequences from each input specimen were demulti-
plexed with the sample and replicate library barcodes as detailed in the Supplemental
Information . Alignment of rearranged IGH sequences to germline V, D, and J and
determi- nation of V-D junctions and D-J junctions were performed with iHMMune-
align ( Gae¨ ta et al., 2007 ). IGHs were assigned to clonal lineages by means of
clustering on CDR3 nucleotide similarity for IGHs that shared the same IGHV, IGHJ,
and CDR3 length. CDR3 sequence similarity was measured by Hamming distance,
and clusters were assigned with a Hamming distance of 95% identity to any existing
sequence and at least 80% identity within the cluster ( Figure S1 ).

Scale-Independent Normalized Measure of Overall Clonality To compare the de-
gree of B cell clonal expansion detected in data sets with varying sequencing depth,
we used a scale-independent metric we have pre- viously described ( Wang et al., 2014
). This clonality metric can be considered the probability that any two randomly se-
lected sequences drawn from inde- pendent replicates are members of the same clonal
lineage.

Analysis of Hypermutation Spectra CDR1 and CDR2 sequences, as defined by
IMGT criteria, were extracted from iHMMune-align results and translated to amino
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acid sequences. CDR1 and CDR2 position count matrices of mutations were con-
verted to substitution frequency vectors. Pearson’s correlation and Pearson’s test for
dependent correlations were used for assessing whether there were differences between
mutation spectra for different data sets. Log-likelihood ratios were used for exploring
single-sequence mutation distributions, allowing comparison of the likelihood that the
observed substitutions were drawn from the mutation distributions of different data
sets.

Single-Cell Plasmablast Sorting, mAb Expression, and Quantification of Plas-
mablast Frequencies PBMCs were cryopreserved with standard methods, and single-
cell sorting was performed as previously described ( Moody et al., 2011 ). Flow
cytometry was carried out prior to single-cell IGH V(D)J PCR and expression of
recombi- nant IgG1 mAbs as previously described ( Liao et al., 2009; Moody et al.,
2011 ) and detailed in the Supplemental Information . In addition, samples collected
prior to vaccination and days 7 and 21 postvaccination were assessed for plasmablast
and B cell phenotypes.

Serum Antibody Binding Tests Plasma samples were evaluated by ELISA with
purified HAs and split vaccine preparations as detailed in the Supplemental Informa-
tion . Five-parameter curve fits were used for data analysis. Endpoint titers were
calculated as 3-fold above assay background, and the assay cutoff was a 1:25 dilution.
Expressed mAbs were tested for binding to influenza antigen by ELISA, as previously
described ( Moody et al., 2011 ). Reactivity to influenza antigens was also studied
with a standardized custom Luminex assay.

HAI of mAbs HAI assays of mAbs were performed as described elsewhere (
Davtyan et al., 2011; Wang et al., 2006 ) and are detailed in the Supplemental In-
formation . Working stocks of influenza were standardized to a HA titer of 8 HA
units per 50 m l for assays for A/California/4/2009 (H1N1), A/Brisbane/59/2007
(H1N1), A/Brisbane/10/2007 (H3N2), B/Brisbane/60/2008, and B/Florida/4/ 2006.
The HAI titer was defined as the reciprocal of the highest dilution of anti- body that
inhibits red blood cell hemagglutination by influenza virus.

Accession numbers
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The dbGaP accession number for the metadata and sequences reported in the
paper is phs000760.v1.p1
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4.4 Dietary gluten triggers convergent T cells in

celiac disease

Celiac disease is an intestinal autoimmune disease driven by dietary gluten and gluten-
specific CD4+ T-cell responses. In celiac patients on a gluten-free diet, exposure
to gluten induces the appearance of gluten-specific CD4+ T cells with gut-homing
potential in the pe- ripheral blood. Here we show that gluten exposure also induces
the appearance of activated, gut-homing CD8+ αβ and γδ T cells in the peripheral
blood. Single-cell T-cell receptor sequence analysis indicates that both of these cell
populations have highly focused T- cell receptor repertoires, indicating that their
induction is antigen- driven. These results reveal a previously unappreciated role of
an- tigen in the induction of CD8+ αβ and γδ T cells in celiac disease and demonstrate
a coordinated response by all three of the major types of T cells. More broadly,
these responses may parallel adaptive immune responses to viral pathogens and other
systemic auto- immune diseases.

4.4.1 Introduction

Celiac disease (CD) is a common autoimmune disease with an estimated prevalence
of 1% among people of European ancestry. It is characterized by small intestinal
mucosal injury and nutrient malabsorption in genetically susceptible individuals due
to dietary gluten ingestion. CD4+ T cells bearing αβ T-cell receptors (TCRs) are
critical in the pathogenesis of the disease, as it occurs almost exclusively in HLA-
DQ2– or HLA-DQ8– positive individuals (1, 2). CD-associated gluten peptide CD4+
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T-cell epitopes have been discovered, and HLA-DQ2/8– restricted gluten-reactive
CD4+ T cells have been identified in individuals with CD (3–5). Nonetheless, no
gluten-induced en- teropathy is seen in humanized mouse models expressing HLA-
DQ2 and a gluten-specific TCR (6, 7), suggesting that CD4+ T cells alone are unable
to induce tissue damage in CD (1, 2).

An increase in intestinal intraepithelial lymphocytes (IELs), composed of both
CD8+ αβ T cells and γδ T cells, is a hallmark of CD. IELs are responsible for the
detrimental consequences of CD, including tissue damage and lymphoma develop-
ment. CD8+ TCRαβ+ IELs (CD8+ IELs) function as effectors in protective immu-
nity to pathogens (8), and in CD they assume a natural killer (NK)-like phenotype to
kill intestinal epithelial cells in a manner independent of TCR specificity (9). In rare
instances, IELs in CD may transform into enteropathy-associated T-cell lymphoma
(EATL), an aggressive lymphoma with a very poor prognosis (10). EATL cells have
been shown to have clonal TCRαβ or TCRγδ rearrangements, indicating that either
CD8+ IELs or γδ IELs may give rise to lymphoma (11, 12).

Despite intense efforts, gluten-specific IELs in CD have not been readily identified,
and there is no significant genetic asso- ciation of CD with any HLA class I alleles.
Moreover, the cy- tolytic function of IELs in CD can be induced irrespective of their
TCR specificity (9). Thus, although the link between dietary gluten and the CD4+
response is well-established, the link be- tween dietary gluten and the recruitment and
activation of CD8+ or γδ IELs in celiac disease is unknown. Furthermore, the role
of the antigen specificity of IELs in CD is unclear. Here we find that CD8+ and γδ
T cells bearing gut-homing receptors are induced by gluten ingestion in CD patients
in parallel with gluten-specific CD4+ T cells, and they bear TCR sequences that
indicate an antigen-focused response. This indicates that antigen-specific responses
of all three of these major T-cell types play a role in this disease.

4.4.2 Results

Celiac disease requires the continuous presence of dietary glu- ten. Reintroducing
dietary gluten to celiac patients who are on a gluten-free diet induces large numbers
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of gluten-specific CD4+ T cells in the peripheral blood 6 d later (4, 5, 13). These
cells express the β7 integrin receptor, indicating that they will home to the intestine
(5). They also express the activation marker CD38 and lack the expression of CD62L,
consistent with an effector phenotype (14). This is generally thought to represent the
initi- ation of an immune response to gluten, and captures activated gluten-reactive
CD4+ effector T cells en route from mesenteric lymph nodes or gut-associated lym-
phoid tissue to the intestine. In an effort to better characterize the context of this
immune response, we studied peripheral blood T cells in celiac patients undergoing
gluten challenge by time-of-flight mass cytometry (CyTOF) (15), which allows for
the independent assessment of many more cellular parameters (currently >40) than
fluores- cence-based flow cytometry. Indeed, we observed an increase in gluten pep-
tide/HLA-DQ2 tetramer-positive CD4+ T cells in the peripheral blood in all five
HLA-DQ2+ celiac patients on day 6 following gluten challenge (Fig. 1 A and C). Un-
expectedly, we also observed a large increase in the number of peripheral blood CD8+
αβ and γδ T cells expressing the intestinal epithelial- homing markers αE (CD103)
and β7 integrins (16) and the ac- tivation marker CD38 (Fig. 1 A and B and Table
S1) at this same time point. These cells were not detected in healthy HLA-DQ2+
controls, who underwent oral gluten challenge after at least 1 mo on a gluten-free
diet.

The kinetics with which these CD8+ and γδ T cells appear is the same as that of
gluten-specific CD4+ T cells, peaking at day 6 after gluten challenge and declining to
the baseline by day 14 (Fig. 1C). A similar response was also detected in two celiac
patients who underwent rechallenge after returning to a gluten- free diet for at least
1 mo (Fig. 1 A and B and Table S1).

The magnitude of the peripheral blood gluten-specific CD4+ T-cell response is
known to be quite variable (4). Similarly, the extent of the αEβ7+CD38+ T-cell
response varied between patients, ranging from 0.37% to 10.17% of total peripheral
blood CD8+ and from 0.06% to 18.61% of total peripheral blood γδ T cells (Fig.
1B and Table S1). One celiac patient (celiac 2) had αEβ7+CD38+CD8+ and γδ T
cells above background levels on day 0, but showed a further increase following gluten
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Figure 4.6: nduction of activated, gut-homing CD8 αβ and γδ T cells in peripheral
blood of celiac patients following oral gluten challenge. (A) Representative FACS
analysis of CD8+ αβ and γδ T-cell (Left) and CD4 + T-cell (Right) response to oral
gluten challenge in CD vs. nonceliac control. Expansion of CD103+ (αE integrin),
CD38+, and gluten tetra- mer+ CD4+ T-cell populations is seen on day 6 in CD.
Most CD38 CD103 cells also express β7 integrin; only CD103 staining is depicted
here. (B) Relative frequency of αEβ7+CD38+ CD8+ T cells as a percentage of total
CD8+ cells (Top) and relative fre- quency of αEβ7+CD38+ γδ cells as a percentage
of total γδ T cells (Bot- tom). (C ) Time course showing rel- ative percentage of
CD38+CD103+ CD8+ (Top), CD38+CD103+ γδ (Mid- dle), and gluten tetramer+
CD4+ (Bottom) in the same patient at the indicated time points following oral gluten
challenge. Parallel recruit- ment of CD38+CD103+ and gluten tetramer+ cells peaks
on day 6 before returning to baseline.
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challenge. The individual with the lowest detectable response (celiac 6) was an HLA-
DQ8+ celiac patient whose disease was diagnosed in- cidentally by intestinal biopsy,
had equivocal antibody test results, and has always been clinically asymptomatic
to gluten. Three individuals with active celiac disease, as determined by ongoing
symptoms and positive autoantibody titers, were found to have αEβ7+CD38+CD8+
and γδ T-cell proportion below background levels of 0.05% and 0.01%, respectively
(Fig. S1). This aspect is similar to the absence of gluten-specific CD4+ T cells in
periph- eral blood of patients with active celiac disease (4, 5). Also, al- though plasma
cells secreting anti-gluten and autoantibodies are present in celiac intestinal lesions
(17–19), we did not detect a similar increase in intestinal-homing B cells (not shown).
This is consistent with reports indicating that tissue transglutaminase- specific B cells
were undetectable in the peripheral blood of celiac patients (19, 20). In summary,
dietary gluten induces the activa- tion and concomitant peripheral blood presence
of CD4+ and CD8+ αβ T cells and γδ T cells with gut-homing potential in celiac
patients who have been on a gluten-free diet (Fig. 1 and Table S1).

Gluten-reactive CD4+ T cells in the peripheral blood of celiac patients have been
shown to be CD38+CD62L−, suggesting that they are gut-bound effector cells (7).
CyTOF analysis showed that αEβ7+CD38+CD8+ T cells are CD38+, CD45RO+,
CD27−, CD28low, CD62L−, and CCR7low (Fig. 2). This phenotype closely resem-
bles the phenotype of CD8+ T cells isolated from duodenal tissue biopsy specimens of
patients with active celiac disease (Fig. 2). CD8+ T cells of this phenotype have been
re- ported to represent differentiated effectors and, accordingly, αEβ7+CD38+CD8+
T cells resemble peripheral blood effector memory CD8+ T cells (Fig. S2) (15, 21,
22). αEβ7+CD38+ γδ cells are predominantly CD45RO+ and CD27−, mirroring
intestinal γδ cells from celiac biopsies (Fig. S3). CD45RO+, CD27− γδ T cells are
thought to be memory cells (23).

The fact that gluten ingestion induces the activation of gluten- specific CD4+
T cells in CD is well-established. However, whether or not the CD8+ and γδ IELs
induced in the intestine are responding to specific antigens is unknown. To address
this question, we performed single-cell TCR sequencing, which provides a nonbiased
means to assess the TCR repertoire with- out requiring expansion of T-cell clones
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Figure 4.7: Peripheral blood αEβ7+CD38+CD8+ T cells induced by oral gluten
challenge express surface markers of effector memory cells and resemble intesti-
nal epithelial CD8+ T lymphocytes from celiac mucosal biopsies. (A) CyTOF
analysis of total peripheral blood (PB) CD8+ from a gluten-challenged individ-
ual (Left) and total intestinal CD8+ T cells from a celiac patient with active dis-
ease (Right) with respect to CD103 and CD38 expression. (B) CyTOF analy-
ses of peripheral blood αEβ7CD38+CD8+ T cells (yellow) and total in- testinal
CD8+ T cells (red) are overlaid on total peripheral blood CD8+ T cells. Periph-
eral blood αEβ7+CD38+CD8+ and celiac intestinal CD8+ cells are pre- dominantly
CD38+CD45RO+CD45RA−CD27−CD28lowCD62L−CCR7−, consistent with an
effector memory phenotype.
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in culture (24). Single T cells were sorted into 96-well PCR plates from peripheral
blood samples of celiac patients following gluten challenge. TCRβ or TCRγ genes were
amplified by a series of nested PCRs, and PCR products were directly sequenced.

We were able to perform sequencing on single T cells with high efficiency. We
sorted and sequenced 90 single tetramer- positive CD4+ T cells recognizing the gluten
epitope DQ2-α-II from the blood of two celiac patients on day 6 after oral gluten
challenge (Table S2). Sequences were successfully obtained from 77/90 (86%) of wells
into which single T cells were sorted. Consistent with published sequences of DQ2-
α-II–reactive T cells from blood and tissue (25), the majority (79%) of unique TCRβ
sequences of individual DQ2-α-II–tetramer+ T cells used TRBV7-2 and most (74%)
contained the described dominant arginine in position 5 of the CDR3β loop (Table
S2), thus val- idating our methodology.

We then sequenced αEβ7+CD38+CD8+ and γδ T cells iso- lated from celiac pa-
tients on day 6 following gluten challenge. αEβ7+CD38+CD8+ T cells, sequenced
in five celiac patients, and αEβ7+CD38+ γδ T cells, sequenced in three celiac pa-
tients, were found to have a high degree of clonal expansion that was not observed
in CD8+CD45RO+ control T cells (Fig. 3). αEβ7 T cells were sequenced in celiac
patients who underwent repeat gluten challenge to determine whether both chal-
lenges would elicit a similar responding TCR repertoire. Indeed, identical TCRβ and
TCRδ clones and similarity in frequency of common clones were found in the two
gluten challenges of these patients who underwent repeat challenge after returning to
a gluten-free diet for at least 1 mo (Fig. S4).

We next evaluated sequences from αEβ7+CD38+CD8+ and γδ T cells to deter-
mine whether we could observe a convergence of TCR features among distinct TCR
sequences. To evaluate con- vergence, we analyzed the nonredundant, unique TCR
reper- toire of αEβ7+CD38+ T cells. For a particular MHC–peptide, specific CD8+
T-cell responses are often biased toward the use of a particular TCRVβ gene (26).
We initially examined TCRVβ gene use. Even individuals of significantly different
genetic backgrounds share similar frequency of V gene use in their TCR repertoire,
indicating that skewing within a particular population of cells is not attributable
to genetic variation in baseline V gene use (27). When assessing the nonredundant
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Figure 4.8: Single-cell TCR sequencing of peripheral blood αEβ7+CD38+CD8+ and
αEβ7+CD38+ γδ T cells reveals clonal expansion upon gluten challenge in celiac
disease. αEβ7+CD38+CD8+ TCRs were sequenced in five separate patients following
gluten challenge, two of whom underwent rechallenge. αEβ7+CD38+ γδ TCRs were
sequenced in three patients, one of whom un- derwent rechallenge. Each individual
dot represents a distinct TCR clone. The size of dots and the position along the y
axis, plotted on a log scale, indicate the relative frequency of a particular clone. The
total number of clones se- quenced in each patient is indicated in parentheses.
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TCRβ repertoire of αEβ7+CD38+CD8+ T cells in celiac samples, we found signifi-
cant overrepresentation of particular V regions in multiple celiac samples compared
with unselected healthy controls (Fig. S5 A and B).

Most of the peptide specificity of TCRβ is determined by the CDR3 loop, which
is usually positioned over the antigenic pep- tide (28, 29). We then determined
whether convergence could be observed within CDR3β motifs, focusing on groups
using TCRVβ genes that were overrepresented in a nonredundant sampling within a
particular individual and had members that were clonally expanded. Strikingly, in
αEβ7+CD38+CD8+ T cells, we found four separate examples where identical TCRβ
proteins used different DNA sequences (Fig. 4 A and B). In three of these instances,
the identically convergent TCRβ occurred in the same patient, and represented a
dominantly expressed TCRβ in that individual. In the other instance, the identical
TCRβ occurred in different patients (Fig. 4A).

Additionally, within TCRVβ sequences using TRBV7-8, TRBV7-9, and TRBV28,
we could identify characteristic amino acid motifs in the center of the CDR3β that
were very common within celiac αEβ7+CD38+CD8+ T cells compared with healthy
reference CDR3β sequences (30) (Fig. 4). For instance, the GN motif at positions
6–7 within the CDR3 region of TCRβ clones using TRBV7-9 was highly enriched,
occurring in 16 out of 40 unique (nonredundant) TCRβ clones, while occurring in
only 12/ 9,584 of TCRβ clones using TRBV7-9 within the reference da- tabase (P
< 0.0001) (Fig. 4 A and C). In patient 4, this motif occurred in 14 of 19 unique
TCRβ clones, and 5 of these unique clones converged on two identical TCRβs. This
motif also oc- curred in two other patients, who converged upon an identical TCRβ.
TCRβ clones using TRBV7-8 similarly converged on a GT motif at position 6–7,
which occurred in 17 out of 29 unique TCRβ clones, in contrast to only 43/4,546
TRBV7-8– containing TCRβ clones within the reference database (P < 0.0001) (Fig.
4 B and C). In all instances where the same TCR was formed using distinct VDJ
rearrangements within the same patient, there were at least two nucleotide changes
within the CDR3, making a PCR or sequencing error improbable.

We applied a similar analysis to αEβ7+CD38+ γδ T cells. In- testinal γδ T cells are
appreciated to be heavily biased toward TRDV1 use (31). Consistent with this, the
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Figure 4.9: Convergent αEβ7+CD38+CD8+TCRβ CDR3 motifs are found among
clones within the same celiac patient and across different patients following gluten
challenge. (A and B) Convergent motifs CxxxxGN (A) and CxxxxGT (B) are seen
in TCRβ clones using TRBV7-9 and TRBV7-8, respectively. The fre- quency of each
clone is indicated and the total number of T cells sequenced in the patient is indi-
cated in parentheses. The protein sequence with the cor- responding DNA sequence
is shown. Within the protein sequence, yellow indicates absolutely conserved amino
acids, gray indicates relatively con- served (≥50%) amino acids, and blue indicates
conserved amino acids that are encoded within the V or J genes. Within the DNA
sequence, nucleotides in yellow are formed through N or P addition, whereas nu-
cleotides in gray are encoded by D genes. Boxes around frequency numbers highlight
distinct clones sharing identical protein sequences. (C) Convergences of motifs seen
in TCRβ clones using TRBV7-9, TRBV7-8, and TRBV28 are statistically significant
compared with reference control TCRβ sequences.
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majority (80%, 150/ 188) of unique αEβ7+CD38+ TCRδ sequences from CD patients
use TRDV1 (Table S3). We analyzed CDR3δ sequences using TRDV1 to determine
whether convergent motifs could be seen in celiac patients. For comparison, we se-
quenced TCRδ from bulk small intestinal γδ T cells from a person without celiac
disease and bulk blood γδ T cells from nine different con- trol patients, obtaining
18,579 unique TCRδ sequences using TRDV1. The most highly expanded sequence,
which was present in 76/152 total sequences, shared the CxxxxxPxLGD motif with
five other unique CDR3δ sequences across two patients. This motif was rare in refer-
ence sequences, occurring in only 50/ 18,579 unique sequences (P < 0.0001; Fig. 5 A
and C). We also found that the amino acid motif CxxxxxxxxYWGI was highly en-
riched within TCRDV1+ CDR3δ in αEβ7+CD38+ γδ cells compared with reference
TCRDV1+ γδ T-cell sequencing, oc- curring in all three celiac patients at a total
frequency of 14/152 unique sequences while only present in 115/18,579 unique ref-
erence sequences (P < 0.0001; Fig. 5 B and C).

The high clonality of αEβ7+CD38+ T cells, the similarity of TCR repertoire upon
a second gluten challenge, and the con- servation of CDR3 motifs in different T-cell
clones suggest that both CD8+ αβ and γδ T cells are activated in an antigen-specific
manner in response to dietary gluten.

4.4.3 Discussion

In CD, dietary gluten induces the infiltration of T cells in the small intestine and
the destruction of intestinal epithelial cells. We find that along with the induction of
gluten-specific CD4+ cells, the reintroduction of dietary gluten to celiac patients on a
gluten-free diet induces the peripheral appearance of large numbers of activated CD8+
and γδ T cells expressing gut-homing markers. These findings are consistent with the
supposition that these T cells are activated and imprinted with gut-homing po- tential
in secondary lymphoid organs by dendritic cells presenting gut-derived antigens (32).
Like peripheral blood gluten-specific CD4+ T cells, these cells express surface markers
consistent with memory or effector cells, indicating that they are programmed as such
before gut recruitment. This suggests that at least some of the pathogenic IELs in
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Figure 4.10: Convergent αEβ7+CD38+TCRδ CDR3 motifs are found among clones
within the same celiac patient and across different patients following gluten challenge.
(A and B) Convergent motifs CxxxxxPxLGD (A) and CxxxxxxxxYWGI (B) are seen
in TCRδ clones using TRBV1. The frequency of each clone is in- dicated and the
total number of T cells sequenced in the patient is indicated in parentheses. The
protein sequence with the corresponding DNA sequence is shown. Within the protein
sequence, yellow indicates absolutely conserved amino acids, gray indicates relatively
conserved (≥50%) amino acids, and blue indicates conserved amino acids that are
encoded within the V or J genes. Within the DNA sequence, nucleotides in yellow are
formed through N or P addition, whereas nucleotides in gray are encoded by D genes.
(C) Con- vergences of motifs seen in TCRδ clones using TRBV1 are statistically
signifi- cant compared with reference control TCRδ sequences.
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CD are purposefully activated and recruited to the gut. Importantly, these cells
respond with a very focused TCR repertoire, indicating that they are selected in an
antigen-specific manner before entering the intestine.

The presence of inflammation has long been postulated to promote the loss of
tolerance, and prevailing models of CD pathogenesis propose that IELs are activated
as a result of in- flammation that is initiated by gluten-specific CD4+ cells. The
inflammatory cytokine IL-15 is up-regulated within celiac intestinal mucosa, and has
been implicated in promoting inflammation through diverse means, including impair-
ing regulatory T-cell generation promoting NK-like function of CD8+ IELs, and en-
abling the expansion of IELs (9, 33). CD8+ IELs have been shown to demonstrate
cytotoxicity through stimulation by IL-15 and activation through NK receptors in-
cluding CD94 and NKG2D (9, 34). Whereas αEβ7+CD38+CD8+ T cells clearly
show markers of effector cells and are capable of IFN-γ production, they largely do
not express perforin, CD57, or higher levels of NKG2D (Fig. S6). Therefore, it is
possible that tissue factors, including IL-15, are further required for cytotoxicity.

The function of γδ IELs is more poorly understood. In human CD, both cytotoxic
and anti-inflammatory functions have been attributed to subsets of γδ IELs (35, 36).
In mice, γδ IELs appear to be constitutively activated with high cytotoxic potential at
baseline (37). However, they express both activating and in- hibitory NK receptors,
and it has been suggested that the com- bination of these NK receptors can keep
the effector functions of γδ IELs in check but enable them to be readily switched
on. Thus, both CD8+ and γδ IEL cell populations may ultimately mediate tissue
destruction through NK receptors and require tissue-derived factors. However, we find
that αEβ7+CD38+ T cells express markers of differentiated effector cells before gut
recruitment, and their appearance parallels the appearance of gluten-reactive CD4+
T cells in blood, rather than occurring later. Also, although increased numbers of
IELs and mildly in- creased levels of IL-15 are present in celiac patients on a gluten-
free diet (38), the recruitment we describe precedes significant intestinal inflammation
and tissue damage, which only reliably occur histologically after 2–4 wk of continuous
gluten exposure (39). These findings suggest that IELs in CD are not simply ac-
tivated as bystanders as a consequence of gut inflammation.
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As celiac IEL populations are induced by gluten, a long- standing question has
been whether their TCRs recognize gluten. Despite extensive study, gluten-derived
peptide epitopes recog- nized by CD8+ T cells in CD have not been apparent, and
there is no significant genetic association of CD with particular HLA class I al-
leles. Therefore, it is generally thought that IELs do not mediate tissue damage
through gluten recognition. Nevertheless, one group has identified a class I gluten
epitope recognized by CD8+ T cells isolated from CD intestinal mucosa (40). If the
αEβ7+CD38+CD8+ T cells we describe are responding to gluten, this would imply
a rapid and efficient cross-presentation of gluten on MHC class I. Besides gluten,
other possibilities for IEL ligands include self-antigens or infectious pathogens. The
possibility of self- antigen recognition is supported by the very selective destruction
of intestinal epithelial cells and the presence of autoantibodies, in- cluding antibodies
to tissue transglutaminase (10, 41, 42). The role of an infectious cofactor in CD has
been proposed based on epidemiologic data showing that neonatal infection seems to
predispose individuals to the development of CD (43).

This process through which these three T-cell subsets are synchronously mobilized
and recruited to intestinal tissue clearly has implications in immunity to infections.
The development of autoimmunity in CD likely represents a misdirected application
of processes that are meant to be protective. Due to the well- established dependence
of CD on the CD4+ T-cell response, the coordinated T-cell response we describe here
presumably depends upon gluten-specific CD4+ T cells. In this context, multiple
aspects of the effector CD8+ T-cell responses to viruses have been shown to depend
upon CD4+ T-cell help, including the primary effector response, the generation of
memory, and re- cruitment to sites of infection (44–47). This process has been termed
“licensing,” referring to the ability of CD4+ T cells to license cognate effector CD8+
T-cell responses. Here we specu- late that CD4+ T cells may be “licensing” self-
antigen–specific CD8+ T cells to become activated and recruited to the intestine,
subsequently leading to tissue damage. This process may share mechanisms with the
processes that have been described to co- ordinate CD4+ and effector T-cell responses
to viruses.
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Like CD, most autoimmune diseases with HLA associations are associated with
MHC class II alleles, including type 1 di- abetes, multiple sclerosis, rheumatoid arthri-
tis, and ulcerative colitis (48). Despite the association of these diseases with class II
alleles rather than class I alleles, CD8+ effector T cells play an important role in the
pathogenesis of these diseases. For in- stance, although type 1 diabetes is strongly
associated with class II alleles, autoreactive CD8+ T cells are extensively found in
inflamed diabetic islets and are appreciated to be the primary effectors driving tissue
damage (49–51). Thus, the scenario we outline above for celiac disease may be gen-
eralizable to other forms of autoimmunity, in that an initial misdirected CD4+ T-cell
response may license effector CD8+ and γδ T cells to cause tissue destruction at a
particular site.

The mobilization of specific lymphocytes into the peripheral blood 6 d after anti-
genic challenge, as has been reported in CD (4, 5) and in the context of influenza
vaccination (52), has provided an invaluable window into antigen-specific responses
in human subjects. It will be interesting to see whether other such migrations are
occurring at specific times in other auto- immune diseases. We also suggest that the
analysis of activated T cells with gut-homing markers in the peripheral blood on day
6 after gluten challenge may be a superior method to diagnose CD in individuals
currently on a gluten-free diet. An estimated 1.6 million Americans follow a gluten-
free diet without an established diagnosis of CD (53). Available tests, including an-
tibody levels and intestinal biopsy results, can be completely normal in CD patients
on a gluten-free diet. Consequently, such individuals are often asked to continually
eat gluten-containing foods for 2–4 wk before testing (39). This is often intolerable
and precludes an accurate diagnosis. Our study shows promise in the reliable clinical
diagnosis of CD with only short-term gluten exposure.

4.4.4 Methods

Gluten Challenge. All human sample collection was performed with informed consent
under Stanford University Institutional Review Board oversight Volunteers underwent
oral gluten challenge as described (4). At time of participation, all volunteers adhered
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to a strict gluten-free diet for at least 1 mo. After an initial blood draw, volunteers
consumed four slices of white bread per day for 3 consecutive days (days 1, 2, and
3) and returned for a second blood draw on day 6. All celiac patient volunteers had
a clinical diagnosis of celiac disease established by small intestinal biopsy in addi-
tion to serologic antibody testing. Five of six celiac volunteers were HLA-DQ2.5+.
One celiac volunteer was HLA-DQ8+ according to clinical testing. Healthy HLA-
DQ2.5+ volunteers were either parents of children with celiac disease or individuals
who endorsed gluten intolerance. Patients were tested for HLA- DQ2.5 by PCR (SI
Methods). All healthy volunteers had a negative clinical diagnostic workup for celiac
disease, and were able to comply with a gluten- free diet for at least 1 mo before
participation.

Tetramer Analysis and Flow Cytometry. All FACS experiments were performed
on ARIAII or LSRII instruments (Becton Dickinson). Water-soluble MHC–DQ2
molecules with covalently tethered peptides were produced in a baculovirus expression
system (54). Two different MHC–DQ2.5 molecules with engi- neered biotinylation
sites were produced with tethered deamidated T-cell epitopes of α-gliadin, DQ2-α-I
(QLQPFPQPELPY) and DQ2-α-II (PQPELPYPQPE). Proteins were biotinylated,
purified, and stored in PBS, 50% (vol/vol) glycerol at −20 °C. Tetramers were pre-
pared by incubating protein with streptavidin– fluorophore conjugates (eBioscience)
at a 4:1 molar ratio. Tetramer staining was performed at room temperature for 1
h using 10 mg/mL tetramer. Anti- body clones used for flow cytometry are in SI
Methods.

Intestinal Biopsy Preparation. Small intestinal biopsies were obtained with in-
formed consent from celiac patients undergoing endoscopy at Stanford University
Hospital and processed as described (55). See SI Methods.

CyTOF Staining and Data Acquisition. CyTOF and data acquisition were per-
formed as described (16) on cryopreserved peripheral blood mononuclear cells or
freshly isolated intestinal lymphocytes. See SI Methods.

CyTOF Antibody Labeling. Purified antibodies (lacking carrier proteins) were
labeled 100 μg at a time according to instructions provided by DVS Sciences with
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heavy metal-preloaded maleimide-coupled MAXPAR chelating poly- mers via Pre-
Load Method version 2.1 (16).

Single-Cell Sorting and TCR Sequencing. Single-cell sorting was performed using
an ARIAII cell sorter (Becton Dickinson). TCR sequences from single cells were
obtained by a series of three nested PCRs as described (24). The full method and
TCR sequence analysis are described in SI Methods.
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4.5 IgE allergen-specific memory storage during im-

munotherapy

Specific immunotherapy (SIT) is the only treatment with proved long-term cura-
tive potential in patients with allergic disease. Allergen-specific IgE is the causative
agent of allergic disease, and antibodies contribute to SIT, but the effects of SIT
on aeroallergen-specific B-cell repertoires are not well understood. Objective: We
sought to characterize the IgE sequences expressed by allergen-specific B cells and
track the fate of these B-cell clones during SIT. Methods: We used high-throughput
antibody gene sequencing and identification of allergen-specific IgE with combinato-
rial antibody fragment library technology to analyze immunoglobulin repertoires of
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Figure 4.11: Antibody heavy chain somatic mutation trees describing putative clonal
evolution relationships between members of allergen-specific B-cell clones. Clone sets
related to scFvs IT5-rD13 (A) , IT6-nD16 (B) , IT6-rD128 (C) , IT6-nD17 (D) ,
and IT6-rD111 (E) are shown. IgE sequences identified as allergen specific in phage
display experiments are represented by diamonds , whereas clone members identified
by means of deep sequencing of nasal biopsy specimens are shown as rectangles and
clone members identified by means of deep sequencing of PBMC specimens are dis-
played as circles . Colors indicate the time point at which sequences were identified:
red , 0 months; blue , 2 months; and green , 1 year of SIT. Symbols indicate the
isotype expressed by the clone member. Nodes with no internal symbol represent IgE
clone members, nodes with triangles represent IgG 1 , and nodes with a circled dot
represent IgA members. Additional exam- ples of trees are shown in Fig E8 .
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blood and the nasal mucosa from ae roallergen-sensitized subjects before and dur-
ing the first year of subcutaneous SIT. Results: Of 52 distinct allergen-specific IgE
heavy chains from 8 allergic donors, 37 were also detected by using high-throughput
antibody gene sequencing of blood samples, nasal mucosal samples, or both. The
allergen-specific clones had increased persistence, higher likelihood of belonging to
clones expressing other switched isotypes, and possibly larger clone size than the rest
of the IgE repertoire. Clone members in nasal tissue showed close mutational re-
lationships. Conclusion: In the future, combining functional binding studies, deep
antibody repertoire sequencing, and information on clinical outcomes in larger stud-
ies might aid assessment of SIT mechanisms and efficacy. (J Allergy Clin Immunol
2016;137:1535-44.)

4.5.1 Copyright

Levin, Mattias, et al. "Persistence and evolution of allergen-specific IgE repertoires
during subcutaneous specific immunotherapy." Journal of Allergy and Clinical Im-
munology 137.5 (2016): 1535-1544.

4.6 High-fat diet insulin resistance induces reper-

toire changes

The development of obesity-associated insulin resistance is associated with B-
lymphocyte accumulation in visceral adipose tissue (VAT) and is prevented by B-cell
ablation. To characterize potentially pathogenic B-cell repertoires in this disorder,
we performed high-throughput immunoglobulin (Ig) sequencing from multiple tissues
of mice fed high-fat diet (HFD) and regular diet (RD). HFD significantly changed
the biochemical properties of Ig heavy-chain complementarity-determining region-3
(CDRH3) sequences, selecting for IgA antibodies with shorter and more hydrophobic
CDRH3 in multiple tissues. A set of convergent antibodies of highly similar sequences
found in the VAT of HFD mice but not RD mice showed significant somatic mutation,
suggesting a response shared between mice to a common antigen or antigens. These
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findings indicate that a simple high-fat dietary intervention has a major impact on
mouse B-cell repertoires, particularly in adipose tissues.

4.6.1 Copyright

Pham, T. D., et al. "High-fat diet induces systemic B-cell repertoire changes associ-
ated with insulin resistance." Mucosal Immunology (2017).

4.7 Affinity maturation targets CDR3 then other

CDRs

Affinity maturation occurs through two selection processes: the choice of appropri-
ate clones (clonal selection), and the internal evolution within clones, induced by
somatic hyper-mutations, where high affinity mutants are selected for. When a final
population of immunoglobulin sequences is observed, the genetic composition of this
population is affected by a combination of these two processes. Different immune
induced diseases can result from the failure of regulation of clonal selection or of the
regulation of the within clone affinity maturation. In order to understand each of
these processes separately, we propose a mixed lineage tree/sequence based method
to detect within clone selection as defined by the effect of mutations on the average
number of offspring. Specifically, we measure the imbalance in the number of leaves
in lineage trees branches following synonymous and non-synonymous (NS) mutations.
If a mutation is positively selected, we expect the number of leaves in the sub-tree
below this mutation to be larger than in the parallel sub-tree without the mutation.
The ratio between the number of leaves in such branches following NS mutations can
be used to measure selection within a clone. We apply this method to the sampled
Ig repertoire from multiple healthy volunteers and show that within clone selection is
positive in the CDR2 region and either positive or negative in the CDR3 and FWR3
regions. Selection occurs already at the IgM isotype level mainly in the DH gene re-
gion, with a strong negative selection in the join region. This is followed in the later
memory stages in the CDR2 region. We have not studied here the FWR1 and CDR1
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Figure 4.12: The branch imbalance framework and examples. (A) Schematic view of
a branch corresponding to a mutation event. Following a mutation, the population
can be expanded (or reduced), the advantage will lead to an exponentially growing
difference in the number of offspring in parallel branches descending from the same
internal origin. T is the time from the mutation to the sampling time. (B) After some
time, one branch will take over the entire sample, and the information carried in the
ratio between the branches will be lost. (C) LONR values histogram for one simulated
sequence pool, simulated under naive multiplication from unique ancestral sequence.
While the average is not 0, there is no difference between branches following S and
NS mutations. (D) Example of tree. In the left branch, a mutation occurred from
CTA to CTG, and the ratio between the mutated and un-mutated branches number
of offspring is 20/10. In the right branch, a mutation from ATA to TTA occurred,
with a ratio of 30/40. In the root, a mutation from CTA to ATA occurred with a
ratio of 70/30.
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Figure 4.13: Position specific effects. Total LONR score per amino acid (averaged
over the 3-nt composing the amino acid). The LONR is drawn for the four isotypes
discussed in previous figures: naïve IgM, memory IgM, IgG, and IgA. Each line
represents a different donor. The highlighted regions represent the CDR2 (to the left)
and CDR3 (to the right). The sequence at the bottom is a typical sequence. The
zone of very strong negative selection at the beginning of the CDR3 is the junction
region. One can observe a switch from a very strong positive selection in the naïve
IgM isotype focused on the CDR3 to a much weaker selection in the IgG and IgA
focused on the CDR2. Note that the scales of the y axes are different between the
plots.
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regions. An important advantage of this method is that it is very weakly affected by
the baseline mutation model or by sampling biases, as are most synonymous to NS
mutations ratio based methods.

4.8 Amino acid content restricts Dh frame usage

The Ab repertoire is not uniform. Some variable, diversity, and joining genes are used
more frequently than others. Nonuniform usage can result from the rearrangement
process, or from selection. To study how the Ab repertoire is selected, we analyzed one
part of diversity generation that cannot be driven by the rearrangement mechanism:
the reading frame usage of D H genes. We have used two high-throughput sequencing
methodologies, multiple subjects and advanced algorithms to measure the D H reading
frame usage in the human Ab repertoire. In most D H genes, a single reading frame is
used predominantly, and inverted reading frames are practically never observed. The
choice of a single D H reading frame is not limited to a single position of the D H gene.
Rather, each D H gene participates in rearrangements of differing CDR3 lengths,
restricted to multiples of three. In nonproductive rearrangements, there is practically
no reading frame bias, but there is still a striking absence of inversions. Biases in D
H reading frame usage are more pronounced, but also exhibit greater interindividual
variation, in IgG + and IgA + than in IgM + B cells. These results suggest that
there are two developmental checkpoints of D H reading frame selection. The first
occurs during VDJ recombi- nation, when inverted D H genes are usually avoided. The
second checkpoint occurs after rearrangement, once the BCR is expressed. The second
checkpoint implies that D H reading frames are subjected to differential selection.
Following these checkpoints, clonal selection induces a host-specific D H reading frame
usage bias. The Journal of Immunology , 2013, 190: 5567–5577.



CHAPTER 4. DISCOVERIES IN NATURAL REPERTOIRES 408

Figure 4.14: DRF usage in the Illumina data. ( A ) Fraction of sequences using each
DRF in each D H . Each column is a D H gene. Each shade is a DRF. One can
clearly see the similar DRF usage as observed in Fig. 3. Differences may arise due to
the fact that different donors were recruited for each sequencing. ( B ) SD of DRF
usage in IF and OF sequences. Each column is the SD of the DRF usage in a given
gene, as computed in Fig. 4B, using the Illumina-based sequences. The expected SD
was computed as 1 over the square root of the sample size. The OF RF SD is only
slightly higher than the one expected by the size of the sample, because the sample
size for OF rearrangements was limited. The IF SD of DRF usage approaches the
maximal possible in this case [0.57 = root of (1/3)], and much more than expected
by the sample size. One can thus conclude that most of the variance in the DRF
usage is determined by selection. D H genes for which there were not enough OF or
IF sequences ( , 100) were not incorporated in the analysis.
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4.9 Detecting selection by branch imbalance in lin-

eage trees

Incremental selection within a population, defined as limited fitness changes following
mutation, is an important aspect of many evolutionary processes. Strongly advanta-
geous or deleterious mutations are detected using the synonymous to non-synonymous
mutations ratio. However, there are currently no precise methods to estimate incre-
mental selection. We here provide for the first time such a detailed method and show
its precision in multiple cases of micro-evolution. The proposed method is a novel
mixed lineage tree/sequence based method to detect within population selection as
defined by the effect of mutations on the average number of offspring. Specifically,
we propose to measure the log of the ratio between the number of leaves in lineage
trees branches following synonymous and non-synonymous mutations. The method
requires a high enough number of sequences, and a large enough number of indepen-
dent mutations. It assumes that all mutations are independent events. It does not
require of a baseline model and is practically not affected by sampling biases. We show
the method’s wide applicability by testing it on multiple cases of micro-evolution. We
show that it can detect genes and inter-genic regions using the selection rate and de-
tect selection pressures in viral proteins and in the immune response to pathogens.

The detection of selection is a crucial issue in population bi- ology, evolution theory
and ecology. It also has important clinical implications. While multiple sequence
based meth- ods have been proposed to detect selection (15,64–69), most of them are
focused on strongly advantageous or deleterious mutations. We have here proposed a
method best adapted to the detection of slightly advantageous or deleterious muta-
tions in micro-evolution.
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The basic concept behind the here reported LONR mea- sure is to test for the
systematic increase of the population size following non-synonymous mutations in
a given region. An advantage of the LONR is that each mutation is counted once
independently of the total number of sequences that end up containing this mutation.
Thus, it is practically un- affected by sampling biases or by the expansion of specific
sub-populations.

While multiple tree shape based methods were developed (18–21), these methods
often cannot detect the direction of selection, and cannot detect which region in the
sequence is selected. Moreover, many of these tree shapes are sensi- tive to sampling
effects making them impractical to use in realistic situations (70).

We have here proposed a new method that can clearly detect positive and negative
selection or their combination, based on the effect each mutation has on the number of
off- spring in the tree under the branch where the mutation has occurred. This method
can only be applied where the muta- tion rate is high enough, and the selection is
weak enough for alleles with disadvantageous mutations to exist in the population.
Specifically, the mutation rate multiplied by the fixation time of mutations should
be much larger than one. The code and a short manual are supplied in the Supple-
mentary Materials.

Such a range exists for example in the population dynam- ics of mitochondria
within host species, in viral dynamics and in the affinity maturation process in ger-
minal centers. We have here studied all these cases and have shown that in- deed
selection can be detected in all cases studied. Other ap- plications of this method can
be the evolution of the Y chro- mosome and the changes in Short Tandem Repeats
(STR) frequencies in it or the evolution of bacteria in an infection in the population.

This method is precise in the domain of a large number of mutations per sequence
(>10) and large samples (>300). In this domain, the method proved to have many
important applications, such as the detection of selection in genes (and actually the
direct detection of genes), the detection of viral proteins passing positive and negative
selection and under- standing the selection process in a B cell immune response. We
have shown that while the ribosomal RNA has a very strong positive selection, some
genes pass positive selection, and others negative selection. In B cells, we have shown
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that while CDR mutations are always positively selected, FWR mutations are selected
against in the majority of the popula- tions, but actually strongly positively selected
in the extreme cases.

The comparison between S and NS mutations is only the most basic distinction
between different types of muta- tions. Other possibilities exist, especially change/no-
change of some amino-acid property, such as size or hydropho- bicity. Such methods
would test for selection for specific changes and not selection for mutation in general.
In other words, the proposed methodology can be used to estimate whether changes in
a given property increase or decrease the number of offspring, compared with a change
not altering this properties. In other words, different definition of the mutations of
interest and the baseline can be defined, and used to detect selection for other features.

The main limitation of the current score is that it is blind to strong selection.
Once a mutation is fixed in (or com- pletely removed from) the population, we will
not observe the polymorphism at this site that allows us to compare the branch sizes.

4.9.1 Copyright
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4.10 Comparative analysis of the mammalian IgH

repertoires

Next-Generation Sequencing combined with bioinformatics is a powerful tool for an-
alyzing the large number of DNA sequences present in the expressed antibody reper-
toire and these data sets can be used to advance a number of research areas including
antibody discovery and engineering. The accurate measurement of the immune reper-
toire sequence composition, diversity and abundance is important for understanding
the repertoire response in infections, vaccinations and cancer immunology and could
also be useful for elucidating novel molecular targets. In this study 4 individual do-
mestic cats (Felis catus) were subjected to antibody repertoire sequencing with total
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Figure 4.15: In MS, B cell receptors are subject to extensive intrathecal SHM. Nu-
cleotide sequences, represented by clusters shown in Figure 1, were selected from the
IgG-VH sequence database and used to generate lineage trees using IgTree software
(see Methods). (A–E) Representative trees for CSF-restricted clusters for patients
(A) MS-1, (B) MS-3, (C) MS-4, (D) MS-6, and (E) MS-5. The corresponding IGHV,
IGHJ, and most com- mon H-CDR3 AA sequences are listed in Supplemental Table 2.
In the lineage trees, each round node represents at least one unique IgG-VH sequence
ranging from at least the 5´ end of H-CDR1 to the 3´ end of H-CDR3; larger nodes
represent up to hundreds of identical sequences. Putative germline sequences were de-
termined using SoDA (https://dulci.org/soda/; ref. 36) and are labeled as black, and
hypothetical intermedi- ates calculated by IgTree are labeled as beige. The numbers
represent mutational steps between nodes; only mutational steps >1 are indicated;
thus, unlabeled branches represent a single mutation. Triangular nodes contain 2 or
more singleton sequences in leaves.
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number of sequences generated 1079863 for VH for IgG, 1050824 VH for IgM, 569518
for VK and 450195 for VL. Our analysis suggests that a similar VDJ expression
patterns exists across all cats. Similar to the canine repertoire, the feline repertoire
is dominated by a single subgroup, namely VH3. The antibody paratope of felines
showed similar amino acid variation when compared to human, mouse and canine
counterparts. All animals show a similarly skewed VH CDR-H3 profile and, when
compared to canine, human and mouse, distinct differences are observed. Our study
represents the first attempt to characterize sequence diversity in the expressed feline
antibody repertoire and this demonstrates the utility of using NGS to elucidate entire
antibody repertoires from individual animals. These data provide significant insight
into understanding the feline immune system function.

4.10.1 Copyright
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Chapter 5

Applications in engineering synthetic

repertoires

5.1 Introduction

In Chapter 1-4, multiple observational studies were presented that provided insights
into the function of the adaptive repertoires in-vivo. In the process, the data informs
new theories for what features cause repertoires to be more or less effective and their
core functions of affinity and specificity. A powerful test environment of such theories
are synthetic repertoires. Interventional and mechanistic, the generation of an in-
vitro repertoire by synthetic means provides a powerful means of evaluating specific
selection effects on a per amino acid per position basis, without the constraints of
the natural repertoire structure and many counfounding processes of positive and
negative selection that occur in-vivo.

5.2 Synthetic repertoires with unbiased landscapes

In this study, we generated a synthetic library where each position of the antibody
CDR-H3 loop had an equal probability of each amino acid. The library provided a
unique opportunity to ask what the effects of amino acid variability would be on the
capacity for antibodies to fold and be selected against antigen. At heart, the libraries

414
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help answer to what degree the amino acid variability that we observe in nature are
present as a consequence of genetic constraints of V(D)J recombination and SHM, or
rather biases at the amino acid level affecting the ability of the molecules to fold.

We have generated large libraries of single-chain Fv antibody fragments (N10^10
transformants) containing unbiased amino acid diversity that is restricted to the
central combining site of the stable, well-expressed DP47 and DPK22 germline V-
genes. Library WySH2A was constructed to examine the potential for synthetic
complementarity-determining region (CDR)-H3 diversity to act as the lone source
of binding specificity. Library WySH2B was constructed to assess the necessity for
diversification in both the H3 and L3. Both libraries provided diverse, specific anti-
bodies, yielding a total of 243 unique hits against 7 different targets, but WySH2B
produced fewer hits than WySH2A when selected in parallel. WySH2A also consis-
tently produced hits of similar quality to WySH2B, demonstrating that the diver-
sification of the CDR-L3 reduces library fitness. Despite the absence of deliberate
bias in the library design, CDR length was strongly associated with the number of
hits produced, leading to a functional loop length distribution profile that mimics
the biases observed in the natural repertoire. A similar trend was also observed for
the CDR-L3. After target selections, several key amino acids were enriched in the
CDR-H3 (e.g., small and aromatic residues) while others were reduced (e.g., strongly
charged residues) in a manner that was specific to position, preferentially occurred in
CDR-H3 stem positions, and tended towards residues associated with loop stabiliza-
tion. As proof of principle for the WySH2 libraries to produce viable lead candidate
antibodies, 114 unique hits were produced against Delta-like ligand 4 (DLL4). Leads
exhibited nanomolar binding affinities, highly specific staining of DLL4+ cells, and
biochemical neutralization of DLL4–NOTCH1 interaction.

5.2.1 References
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potential.” Journal of Molecular Biology (2013).
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Figure 5.1: Quality control analyses for sub-libraries WySH2A and WySH2B. (a)
Length distribution observed in CDR-H3s of lengths 10, 12, and 14. While the ma-
jority of each library falls into the correct length bin, pyrosequencing of 465,242 clones
in total identified many examples with incorrect amino acid length in CDR-H3. This
length mismatch involves both addition and omission of codons, suggesting that the
fidelity of codon incorporation is imperfect. (b) Amino acid incorporation profile in
clones from CDR-H3 length 10 (only the 8 randomized positions shown, for clarity).
Amino acid biases were very similar in every randomized position. Profiles showed
no substantial differences between library lengths (other than the length differences).
(c) Amino acid incorporation trends for CDR-H3 lengths 10, 12, and 14. While equal
representation of all amino acids (excluding cysteine) was expected at each diver-
sified position, some clear deviations are observed. (d) Analysis of design fidelity.
Plotting percentage observed against percentage expected shows a strong correlation
(r2 = 0.992), suggesting that the amino acid distributions found at each position in
all sequences are highly reproducible. In this plot, lysine (K) codons were found to
be significant outliers, while all others were very uniform. (e) Plotting the ratio of
observed versus expected for lysine-containing codon pairs in comparison to all others
shows that KK pairs (or AAA-AAA in DNA sequence) suffer from particularly poor
incorporation rates. (f) A random selection of between 16 and 24 scFvs from each
of the 12 WySH2A and 6 WySH2B sub-libraries (360 clones in total) were tested for
expression in Western blot and also for binding to Protein A in ELISA. Each point
represents one sub-library and is plotted according to percentage performance in each
analysis. Points are colored according to CDR-H3 length, running from shortest ( )
to longest ( ). In comparison of the two data sets, r2=0.5939, suggesting a correla-
tion between scFv expression rate and functionally folded library content. For both
WySH2A and B libraries, increased CDR-H3 length leads to a decreased frequency
of expressed clones.
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Figure 5.2: Analyses of percentage amino acid content in CDRs of unselected WySH2
clones, WySH2 hits, and naturally occurring sequences. (a) A total of 407 unselected
WySH2 CDR-H3 sequences ( ) are compared to sequences of 243 hits from WySH2
(P) and 9242 CDR-H3 sequences found in natural human repertoire databases(
). Amino acids are arranged in descending order from left to right, correspond-
ing to their frequency in the natural human repertoire. (b) Amino acid ER for
selected:unselected WySH2 CDR-H3 sequences. A ratio N 1.0 was regarded as en-
riched. (c) A total of 212 unselected WySH2BCDR-L3( )sequencesarecomparedtose-
quencesof109hitsfromWySH2B(P)and7269CDR-L3sequences found in natural human
repertoire databases ( ). (d) Amino acid ER for selected:unselected WySH2 CDR-L3
sequences. (e) Positional amino acid frequencies in the CDR-H3 of recovered clones.
(f) Correlation to library design of N-terminal stem, C-terminal stem, and central
loop positions (three example selected Middle positions) averaged across all recov-
ered functional clones. (g) Structural model of positions exhibiting deviation from
design. Stem positions with low correlation to design (95, 100n-2, and 100n) are indi-
cated in yellow; stem and loop positions with high correlation to design are indicated
in red.
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5.3 Synthetic repertoires with natural sequence

landscapes

We present a method for synthetic antibody library generation that combines the
use of high-throughput immune repertoire analysis and a novel synthetic technology.
The library design recapitulates positional amino acid frequencies observed in natural
antibody repertoires. V-segment diversity in four heavy (VH) and two kappa (V )
germlines was introduced based on the analysis of somatically hypermutated donor-
derived repertoires. Complementarity- determining region 3 length and amino acid
designs were based on aggregate frequencies of all VH and V sequences in the data
set. The designed libraries were constructed through an adaptation of a novel gene
synthesis technology that enables precise positional control of amino acid composition
and incorporation frequencies. High-throughput pyrosequencing was used to monitor
the fidelity of construction and characterize genetic diversity in the final 3.6 × 10^10
transformants. The library exhibited Fab expression superior to currently reported
synthetic approaches of equivalent diversity, with greater than 93% of clones observed
to successfully display both a correctly folded heavy chain and a correctly folded light
chain. Genetic diversity in the library was high, with 95% of 7.0×105 clones sequenced
observed only once. The obtained library diversity explores a comparable sequence
space as the donor- derived natural repertoire and, at the same time, is able to access
novel recombined diversity due to lack of segmental linkage. The successful isolation
of low- and subnanomolar-affinity antibodies against a diverse panel of receptors,
growth factors, enzymes, antigens from infectious reagents, and peptides confirms the
functional viability of the design strategy.

5.3.1 Introduction

Antibodies represent the largest class of biother- apeutic molecules in the clinic. Their
ability to impart high specificity and long half-life has made them a very attractive
therapeutic modality for targeting extracellular ligands and receptors. Tradi- tional
methods of generating monoclonal leads by hybridoma technology are increasingly
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replaced by in vivo (transgenic mice) and in vitro (yeast and phage display) meth-
ods that generate human leads.1,2 In vitro methods employ libraries generated from
donor-derived B cells, synthetically derived diversity, or semisynthetic approaches
that incorpo- rate diversity from a combination of these two approaches.

The most common display method for these libraries relies on surface display of fil-
amentous phage3 because of the ability to generate fairly large libraries (10^7–10^11).
The number of unique anti- bodies displayed by phage is limited by the transforma-
tion efficiency of Escherichia coli, a re- quirement for the library generation process.
In contrast to natural repertoires, the size of an in vitro library is fixed after genera-
tion. Therefore, it is widely accepted that large libraries yield more specific binding
solutions,4 and the trend has been towards the development of larger libraries: librar-
ies of 10^11 transformants are not uncommon.5

Given the finite number of clones within a library, the goal of library design should
be to maximize functional diversity in the antibody population. Library diversity
is often defined as the total number of unique antibodies encoding different amino
acid combinations in6their complementarity-determining regions (CDRs). Functional
diversity considers only the subset of these unique antibodies that are able to fold
appropriately and display a stable heterodimer capable of recognizing antigen in the
context of the display system being utilized. As it is possible to generate genetic
diversity that cannot produce a properly folded antibody, there needs to be an effort
to maximize the overlap between genetic and functional diversity during in vitro
repertoire design. Traditional library designs have balanced these needs by obtaining
diversity from two fundamen- tally different sources: natural diversity or synthetic
diversity.

Natural antibody repertoires benefit from high functional diversity but exhibit
constrained genetic diversity. A high proportion of well-folded proteins capable of
recognizing antigens are selected for during B-cell maturation and during positive,
negative and antigen-driven selection. Biased amino acid usage in the natural reper-
toires7 has been demonstrated to directly impact the success of functional antibody
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response.8–10 However, natural clonal proliferation results in many redundant high-
frequency clones,11 and the V(D)J (V, variable gene segment; D, diversity gene seg-
ment; J, joining gene segment) diversification mechanisms produce cor- relations be-
tween adjacent amino acids that con- strain accessible genetic diversity.12

For exploring diversity beyond that available from the natural repertoire, synthetic
methods have been developed to control framework usage and intro- duce artificial
CDR variation not observed in nature. Two fundamentally distinct methodologies
have been developed to insert synthetic codon diversity into antibody CDR posi-
tions. The first employs degenerate nucleotide codons,13–17 and the second uses trin-
ucleotide phosphoramidite (TRIM)-based oligonucleotide synthesis.18,19 Both pro-
duce librar- ies with variable positions diversified according to the composition of a
limited number of amino acid cocktails. In general, synthetic antibody library de-
sign approaches allow for additional control over framework selection and access to
nonnatural CDR diversity but suffer from common errors in molecular assembly and
difficulty exerting fine control over amino acid composition. Without natural selection
mechanisms to screen for function- al diversity, synthetic library designs are vulnera-
ble to generating nonfunctional antibodies.20 Synthetic designs limiting diversity to
a single CDR have succeeded in demonstrating expression of up to 90% of clones.17
However, published synthetic libraries with diversity in multiple CDRs have reported
much lower proportions, with between 23% and 39% of unproductive clones.15,18,21
Screening methods have been proven effective in reducing stop codons and frameshifts
in synthetic repertoires but add additional library preparation steps.16,21

From the earliest synthetic libraries, it has been observed that biases in the natural
repertoire are selected for in the functional binders recovered from synthetic reper-
toires.9,13,22 Many of these biases are considered to represent functional elements
that contribute to folding and stability.9,15,23,24 Including known biases from the
natural antibody repertoires has been demonstrated to contribute to successful syn-
thetic designs.9,15 A number of design strategies have aimed to balance the benefits
of genetic and functional diversity by combining features of natural and synthetic
repertoires, such as introduc- tion of synthetic diversity only in CDR3 while leav-
ing CDR1 and CDR2 entirely germ line,18 introducing synthetic diversity into CDR1
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and CDR2 while introducing natural diversity into CDR3,25 and diversifying multiple
CDRs with minimalist degenerate codons strongly biased to- wards a few common
amino acids observed in natural paratopes.9 More recent libraries have attempted
diversifying all six CDRs by synthetic methods, controlling which amino acids are
found at each position to be more consistent with those found in nature.21

The ability to mimic nature in synthetic libraries has been limited by both the
quality of synthesis technologies and the depth of our understanding of the natural
repertoire. Recent advances in high- throughput sequencing and repertoire analy-
sis have made it possible to survey the antibody functional diversity landscape at
great depth.6 In this study, we present a synthetic library design derived from high-
throughput sequencing of a human donor- derived natural repertoire. To act on the
design, we modified a novel solid-phase gene synthesis tech- nology that enables pre-
cise positional control of amino acid composition and frequency.26 We evaluate the ge-
netic and functional diversity of the design with Sanger sequencing, high-throughput
sequencing, expression analysis, and antigen pan- ning. We compare the sequence
space explored in these libraries with previously reported natural and synthetic li-
braries.

5.3.2 Results

Design of synthetic fitness libraries A total of four heavy-chain and two light-chain
Fab libraries were designed based on the amino acid variation observed in natu-
ral antibody repertoires.6,27–30 Germ-line frameworks VH1–69, VH3–23, VH3–30,
VH4–34, V 1–39 (K02), and V 3–20 (A27) were selected based on three criteria: ther-
mostability of V-gene families,18 germline frequency in natural repertoires,6,28–30
and heterodimer compatibility observed in productive binders.6 The synthetic fit-
ness Fab (SF-Fab) design aimed to minimize variation that might cause instability
or misfolding by mimicking natural diversity. Diversity was determined through the
analysis of amino acid frequencies in functional binders from public data- bases and
high-throughput sequencing analysis of a somatically diversified natural repertoire
derived from over 650 human donors.6 While both periph- eral blood mononuclear
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cells and public databases have considerable redundancies in their composi- tion, bias
was minimized by rendering the data sets clonally nonredundant by including only
one representative from each clonally related population of sequences derived from a
common V(D)J rearrangement event for the final analysis. The design of VH1-69/V
1–39 Fab library is shown in Fig. 1. All six CDRs were diversified using amino
acid variation observed in nature, while framework positions were left entirely human
germ line. In CDRs, diversity was incorporated in a subset of positions observed to
tolerate variation in somatically hypermutated natural antibodies and to be struc-
turally proximal to antigen contact. The CDR-H3 design considered a cassette of the
10 lengths that are most often observed in nature (lengths 7–16; positions 95–100j,
Kabat), avoiding very short and long CDR-H3s that have been reported to be under-
represented in recovered binders.22 In each length, the diversity of amino acids was
introduced based on their frequen- cy at each position within that length. All heavy-
chain libraries received germ-line-specific CDR-H1 and CDR-H2 diversity designs but
shared a common CDR-H3 design. At all variable positions, amino acid frequencies
were rounded off to increments of 5%, cysteines were excluded from the design, and
rounding off was corrected by the slight over- incorporation of tyrosine when appro-
priate.10 An example of designed versus observed amino acid frequency in VH1–69
CDR-H3 (length 13) and V 1– 39 CDR3 is shown in Tables 1a and 1b.

Generation of SF-Fab libraries The library construction technology reported in
this study was based on a novel ligation gene synthesis technology (Slonomics®),
which relies on a set of universal building blocks (“anchors”) that is used in a series of
enzymatic reactions to generate any possible DNA sequence triplet per triplet.26 The
technology was modified in order to allow complex codon mixture incorporations in
highly defined gene libraries. Instead of ligating a single building block to the growing
chain, a defined mixture of anchors is used to introduce a set of triplets (codons) at a
certain position. In the following ligation step, a complementary mixture of anchors
is added either to return to the constant wild-type sequence or to generate a further
variable position (Supplementary Fig. 1). Based on this principle, any variable
motif can be introduced into any position of a DNA sequence. Precise amino acid
composition is controlled by adjusting codon frequencies in an anchor mix. A total
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Figure 5.3: Library design of sublibrary VH1–69/V 1–39. Biased amino acid frequen-
cies observed from affinity-matured nature repertoires were used to introduce diversity
into all six CDRs. Non-germ-line amino acid variation for each CDR position is indi-
cated for all CDRs: Kabat labeling and germline reference residue are shown for each
position. Amino acids were incorporated at the frequencies observed in nonredun-
dant populations of functional binders from public databases and high-throughput
sequencing of the donor-derived repertoires,6 rounding off to the nearest 5%. The
CDR-H3 design considered a cassette of the 10 lengths most often observed in nature
(lengths 7–16, Kabat positions 95–100j). All heavy- chain libraries shared the same
H3 cassette along with their germ-line-specific CDR-H1 and CDR-H2 diversity. The
CDR- H3 length 13 design is shown.
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of 100 "g of DNA was obtained for each library. All four VH libraries were paired
with each of two V libraries to create eight SF-Fab libraries (SF-Fab1 to SF-Fab8).
After a total of 800 transformations, an estimated 3.6 × 1010 successful tranformant-
containing Fab antibodies were obtained.

454 sequencing of the libraries The quality of both pre-transformation and
post- transformation SF-Fab libraries was monitored via Roche Titanium 454 high-
throughput pyrosequen- cing. Total filtered sequences obtained from each library
before and after transformation are summa- rized in Supplementary Table 1. In
the sequence set, we observed 0.00069 framework base miscalled per framework nu-
cleotide. However, the accumulation of errors was such that if one error was located
in the framework of a single sequence, more errors were more likely to be observed in
other areas of that same sequence (Supplementary Fig. 5). This positive correlation
of errors in “low quality” sequences leads us to drop any sequence where a known er-
ror could be detected. Short sequences, sequences with errors in framework positions,
and sequences with detectable indel errors were removed from subse- quent analysis.
Initial pre-transformation sequenc- ing was used to identify and correct deviations
from design introduced during library synthesis. Final sequencing was used to eval-
uate sequence compo- sition of the library. Each V-segment library was compared
to the design with a minimum of 17,400 full-length translated reads, and a single
library (VH1–69/V 3–20) was sequenced to a much greater depth of 532,479. Amino
acid composition of every variable position created during synthesis was compared to
the expected design. The resulting amino acid incorporations were highly correlated
(Pearson’s r = 0.992) to the corresponding design for both high (N50%) and low
(5%) expected incorpo- ration frequencies (Fig. 2a). Across all variable positions,
codons were inserted in proportion to their expected frequency, although a marginal
trend towards underincorporation of phenylalanine co- dons and overincorporation
of arginine codons was observed (Fig. 2b). Amino acid usage remained unaltered
before and after transformation (Pearson’s r N 0.999 for all CDR-H3 lengths). Stop
codon usage was observed to be at most 0.024% per position (3139 stop codons of
13,079,597 generated CDR-H3 amino acids observed). In the final library, 99.6% of
H3 designs were free of stop codons (3103 CDR-H3s with at least one stop codon
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out of 736,929 CDR-H3s observed). The stop codon rate was 15-fold lower than that
observed in 504,550 CDR-H3 sequences obtained from a synthetic CDR-H3 library
produced using TRIM synthesis (0.36% per position observed over 8,387,818 CDR-H3
amino acids generated).

Distance of CDRs to natural repertoire Sequence variation in CDR1 and CDR2
was compared between SF-Fab libraries, Dyax synthetic libraries, HuCAL GOLD
synthetic libraries, and donor-derived natural libraries (Fig. 3a). For all antibodies
in each repertoire, the number of amino acid changes in the CDRs to the closest
ImMuno- GeneTics (IMGT) human germ-line V gene was evaluated.31 Antibody
variable domain sequences from the donor-derived IgM natural library were obtained
from high-throughput sequencing in a previous study.6 Antibody variable domain se-
quences from published Dyax synthetic libraries were simulated based on reported
amino acid frequencies at diversified positions.18,25 SF-Fab sequences were obtained
by Roche 454 sequencing in this study. The Dyax library with synthetic diversity
in CDR1 and CDR2 produced antibodies with more than 99% of the sample library
carrying at least six nonhuman germ-line mutations. The HuCAL GOLD synthetic
libraries encoded no variation into CDR1 and CDR2. Our synthetic design produces
a V-gene mutational load compa- rable to that generated by somatic hypermutation
in the natural repertoire, with less than 5% of the library being germ-line reference,
less than 5% containing over five non-germ-line mutations, and the remaining 90%
exploring combinations of one to five mutations in the V-segment CDR1 and CDR2.
All synthetic libraries produce repertoires with less framework mutations than those
observed in natural repertoires.

CDR-H3 amino acid distance to the natural human repertoire was compared
between SF-Fab, HuCAL GOLD synthetic, unbiased TRIM synthetic, and natural
donor-derived libraries (Fig. 3b). The antibody sequences in each library were com-
pared to an independent natural reference set of 1.4 million nonredundant CDR-H3
amino acid sequences obtained from CD20+CD27 fluorescence-activated cell-sorted
peripheral blood mononuclear cells from 16 human donors of diverse age, gender,
and ethnographic origins (unpublished results). For each CDR-H3 sequence in a
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Figure 5.4: (a) Amino acid incorporation, observed versus expected. All amino acids
at all variable positions were compared to the design with a minimum of 20,000
full- length translated reads from high-throughput sequencing. The observed amino
acid frequencies were highly corre- lated (Pearson’s r=0.992) to the design for both
high (N50%) and low (5%) expected incorporation frequencies. (b) When averaged
across all variable positions in all sublibraries, amino acid incorporation resembles
expected with marginal overincorporation of arginine and under- incorporation of
phenylalanine.
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library repertoire, the percentage of amino acid identity to the most similar same-
length CDR-H3 in the reference set was obtained. For the donor-derived SF-Fab and
TRIM repertoires, the query sequences were obtained by pyrosequencing. For Hu-
CAL GOLD, the reference sequences were simulated from the amino acid frequencies
reported for the published library design.21 For any CDR-H3 amino acid sequence
in the SF-Fab library, the closest CDR-H3 found in the natural reference set was
64% identical on average (length was normalized to avoid overcounting most frequent
lengths). Other synthetic libraries pro- duced CDR-H3 repertoires that are more
distant from the natural repertoire: 46% and 54% identity for unbiased TRIM and
HuCAL GOLD, respective- ly. The SF-Fab design produces a CDR-H3 popula- tion
with amino acid distance comparable to that observed in donor-derived natural reper-
toires (63% identical with closest reference). The trend was observed for all CDR-H3
lengths, with the strongest effects observed for longer CDR-H3 lengths. Data for
CDR-H3 length 14 is shown in Fig. 3b.

Overlap and frequency of library clones Each chain of each sublibrary was se-
quenced once before transformation and twice after transforma- tion. All reads were
translated and aligned to a reference profile hidden Markov model and were filtered
by expected framework composition sur- rounding the CDRs. In the recovered se-
quences, clonal overlap in the sequencing results of CDR-L3 and CDR-H3 repertoire
was evaluated (Fig. 4).

In the light chain, 50,000 randomly sampled CDR- L3 sequences were compared
between a pre-trans- formation sample, v0, and two post-transformation sequencing
sets, v1 and v2 (Fig. 4a). In all samples, the majority of clones were observed multiple
times, with between 5250 and 5309 unique clones observed in each sample of 50,000
sequences. Over 75% of clones in each sample were observed in another sample,
with 62% (3329) of CDR-L3s from any sample found in all three samples. When
extended to all 294,272 CDR-L3 sequences obtained from post-transformed libraries,
13,948 unique amino acid CDR-L3s were observed, with 56.5% being observed more
than once and over 98.8% of all 14,112 possible CDR-L3s theoretically available by
the design recovered during sequencing. For all unique clones, the observed clone
frequency obtained from sequencing was compared to the theoretical clone frequency
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Figure 5.5: (a) Sequence variation in CDR1 and CDR2 was compared among SF-
Fab libraries, previously published synthetic libraries, and a donor-derived library.
For each sequence in each repertoire, the number of CDR1 and CDR2 amino acid
changes to IMGT reference is reported. For each library, the percentage of sequences
in each mutation category is reported. (b) CDR-H3 length 14 amino acid distance to
a natural human repertoire reference data set of 1.4 million sequences from 16 healthy
donors (unpublished results). The SF-Fab CDR-H3 diver- sity largely overlaps that
of the donor-derived repertoire in amino acid composition.
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expected from the design (Fig. 4b). Theoretical clone frequency describes how often
one expects to find a specific clone given a known library design. When compared
to an actual library of finite size, it can be used to predict the probability of a clone
being present. For example, a 10! 12 clone is expected to appear once for every 1012
sequences. In a 1010 library, it has a 1% chance of being present. In general, any
clone with a theoretical frequency less than the inverse of the library size is expected
to either not appear in the library or appear as a singleton. Conversely, clones are
likely to appear multiple times in a library if the theoretical clone frequency is greater
than the inverse of the library size. High-frequency clones can have a strong negative
impact on total library size by “occupying” space that could otherwise be occupied
by singletons.

Clones expected to be of high frequency in the design were recovered more fre-
quently during sequencing. Common CDR-L3 clones were ob- served to be highly
represented in the repertoire, with 10! 3 CDR-L3s representing 30% of the library,
10! 4 CDR-L3s representing 52% of the library, and 10! 5 CDR-L3s accounting for
16% of the library. Singleton CDR-L3 clones, recovered only once during sequencing,
had lower theoretical frequen- cies than CDR-L3s recovered multiple times. Over-
all, observed clone frequencies were highly correlated to theoretical clone frequencies
across all observed frequencies (Pearson’s r=0.733).

In the heavy chain, 100,000 randomly sampled CDR-H3 sequences were compared
in the same manner as described above (Fig. 4c). In the CDR-H3 samples, the over-
whelming majority of clones were observed only once, with 90,164, 98,409, and 98,596
unique clones observed in sets v0, v1, and v2, respectively. Almost all clones observed
were unique to a single sample, with between 97.0% and 98.5% of clones being unique
to each sample and only 188 CDR-H3s found in common between all three samples.
Overlap between pre-transforma- tion and post-transformation samples was mini-
mal, with 0.8% of overlapping clones observed between samples. Post-transformation
samples, obtained from the same sample preparation, exhibited 2.4% overlap. In all
737,285 translated CDR-H3 post- transformation sequences, 696,090 unique CDR-H3
clones were observed, with 5.0% observed more than once. For all clones observed
more than once, and a random subset of 1000 CDR-H3 singletons, the observed clone
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Figure 5.6: Clonal frequency and overlap in CDR-H3 and CDR-L3 repertoires.
(a) Overlap of CDR-L3 repertoire observed in 50,000 sequences from one pre-
transformation population (v0) and two post-transformation populations (v1 and
v2). The majority of CDR-L3 clones were recaptured in all three samples. (b) Ob-
served versus theoretical CDR-L3 frequency of 13,948 unique clones recovered from
294,272 sequences. High-frequency clones dominate the repertoire. (c) Overlap from
CDR-H3 repertoire observed in 100,000 sequences from v0, v1, and v2. Over 98% of
clones were only observed once. (d) Observed versus theoretical CDR-H3 frequency
of clones recovered from 747,285 sequence$2s. All clones appear with frequencies b10!
4, and low-frequency clones dominate the repertoire.
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frequency obtained from se- quencing was compared to the theoretical clone frequency
expected from the design (Fig. 4d). In contrast with the CDR-L3, almost all clones
were observed at low frequency, and no clones were predicted or observed to occur at
a frequency higher than 10! 4. Clones recovered five or more times during sequencing
had correlated high theoretical frequencies (10! 4 to 10! 5) and were expected from
the design. Clones observed more than once represented 1.5% of the total library.
The majority of these clones were from the shortest CDR-H3 lengths that have the
fewest variable positions and are therefore inherently expected to produce higher-
frequency clones. We also observed a very short CDR-H3 clone not expected by de-
sign but repre- senting 0.13% of all observed clones. The clone represented a failed
insertion of CDR-H3, establish- ing the ligation efficiency of the CDR-H3 insertion
step at greater than 99%.

CDR-H3 linkage profile During V(D)J recombination, adjacent amino acids are
“linked” on the segment and continue to appear more frequently at adjacent posi-
tions in the V(D)J rearranged repertoire. This correlation be- tween adjacent amino
acids has been observed to greatly constrain theoretical diversity in natural CDR-H3
repertoires. The SF-Fab synthetic method allows complete recombination between
all amino acids at every adjacent position and is therefore not expected to exhibit
similar linkage constraints. We compared the degree of linkage in equal-sized sam-
ple populations of 15,084 CDR-H3 length 10 sequences obtained from donor-derived
and SF-Fab libraries. At every position and for every amino acid, we compared the
fraction of all possible adjacent amino acid triplets observed at each position in the
CDR-H3 (Fig. 5). For example, alanine is among the amino acids observed at greater
than 1% usage at CDR-H3 Kabat position 97 in the natural repertoire. At position
96, glutamate, lysine and glutamine are also observed at greater than 1% usage; the
same is true for proline, serine and tyrosine at position 98. In the population of
15,084 sequences from the data set from the donor-derived library, four of nine pos-
sible triplet combinations of these residues are found, while E–A–P, E–A–S, K–A–Y,
Q–A–S, and Q–A–Y are never found. Given the independent amino acid frequencies
at each position, these combinations would have been expected. Therefore, in the
subset of residues displayed in the sample figure, linkage only provides for 44% of
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all possible combinations of this subset of neighbor amino acid triplets for alanine at
position 97. Total triplet linkage was calculated as the fraction of all possible amino
acid triplets observed at every position in the CDR-H3 for each amino acid observed
with at least 1% frequency at a given position. When all amino acids at all positions
were evaluated in the data set of 15,084 randomly chosen sequences, only 49% of all
possible combinations were observed in the donor- derived repertoire (Fig. 5a). In
contrast, the synthetic design produces a repertoire in which every residue is found
recombined with almost every other residue (Fig. 5b) with 96% of all possible triplets
observed in a similar random size-matched subset of 15,084 sequences.

Expression of functional Fab antibodies The expression of full functional Fab an-
tibodies in the library was accessed by ELISA from 1790 random clones. The soluble
Fab antibodies were captured onto the plates by anti-His antibody (His tag on heavy
chain) and detected by horseradish peroxidase (HRP)- conjugated anti-human kappa
and/or anti-human Fab antibodies. On average, 93% of all tested clones in the li-
brary expressed correctly folded heavy-chain and light-chain Fab fragments (Table 2).
Higher average expression efficiency was observed for V 3– 20 (96%) than for V 1–39
(91%). Heavy-chain VH3–23 produced higher average expression efficiency (96%),
while the other three VH libraries performed compa- rably (92%, 92%, and 93% for
VH1–69, VH3–30, and VH4–34, respectively). The positive Fab expression rate for
all sublibraries was higher than that reported in past synthetic Fab designs (61%,
70%, and 77%).18,21,32 The expression level was estimated by ELISA along with a
titrated standard control (purified human Fab antibody) based on 280 random clones
from the library (Supplementary Fig. 2). In this subset, 94% of analyzed clones
expressed soluble Fab fragments. It was observed that in the expressing clones, 91%
expressed more than 240 ng/ml and the remaining 9% expressed between 60 and 240
ng/ml of soluble Fab as estimated from the standard curve. The number of Fabs
per phage was determined according to an ELISA method33,34 by calculating the
ratio of phage in the linear range derived from anti- kappa/anti-M13 (pIII) capture
antibodies. The results show that there is an average of 0.4–0.5 Fab molecules per
phage (Supplementary Fig. 3).
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Figure 5.7: LossofdiversityduetolinkagebetweenadjacentaminoacidpositionsinCDR-H3.Ontheleft,asubsetofamino
acids observed at Kabat positions 96, 97, and 98 is indicated. Colored lines indicate
combinations of adjacent residues observed in sequences from reference sets of 15,084
CDR-H3 length 10 sequences. On the right, all adjacent (n ! 1)(n)(n + 1) amino
acid triplets observed for each residue at each position in CDR-H3 are indicated.
(a) A donor-derived repertoire exhibits linkage between amino acid composition
at adjacent positions: 49% of all potential (n ! 1)(n)(n + 1) adjacent amino acid
triplets are observed. (b) Over 96% of all potential (n!1)(n)(n+1) adjacent amino
acid triplets observed in the synthetic SF-Fab library sequences.
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Selection of antibodies against a panel of antigens The library produced positive
binders against a diverse panel of 10 antigens including receptors, growth factors,
an enzyme, a peptide, and a viral antigen (Table 3). In three to four rounds of
panning, ELISA-positive clones were recovered against all antigens, with systematic
enrichment of ELISA- positive clones observed between rounds (Supple- mentary
Fig. 4). Recovery varied between antigens, with ELISA-positive clones represented
between 5% and 76% of clones sampled from the third or the fourth round of panning.
Sequencing of ELISA- positive clones recovered 5–180 unique antibodies per antigen.
The binding kinetics of nonredundant binders were determined by biosensor analysis,
with accurate kinetic and affinity parameters able to be determined for 6 of 10 antigens
(Fig. 6a and b). Typical results of the single analyte concentration and multiple
analyte concentration methods appear in Fig. 6c and d, respectively. Affinities ranged
from over 100 nM to under 1 nM. Without any affinity maturation, three of the
antigens panned (CD152, H1N1 hemagglutinin, and hIgG2) produced hits ranging
from 20 nM to 300 pM. Of the samples selected for follow-up kinetic analysis, it was
revealed that 5 anti-H1N1, 13 anti-hFab, and 9 anti-CD152 antibodies had a KD
value of less than 10 nM, with the best affinities being 1.4 nM, 2.5 nM, and 0.3 nM,
respectively (Fig. 6a).

Sequence analysis of recovered binders Some VH-segment libraries were more ef-
fective at producing hits against the panel of antigens tested. Libraries utilizing
the VH1–69 framework produced 309 unique binders, VH3–23 produced 106 unique
binders, VH3–30 produced 79 unique binders, and VH4–34 produced 20 unique
binders. Light-chain bias was not observed overall (237 V 1–39 versus 249 V 3–20
binders recovered), although V 1–39 was observed more frequently in the highest-
affinity binders. Detailed analysis of recovered binders from VH1–69 demonstrated
that amino acid usage in CDR-H1 and CDR-H2 resembled the design (Fig. 7a). All
amino acids encoded in the V-gene design were recovered in binders. The positional
amino acid frequency in binders was highly correlated with the design (Pearson’s
r = 0.995). Arginine at CDR-H2 Kabat position 55 was underrepresented (0.6%
observed versus 3.8% expected), and proline at CDR-H2 Kabat position 57 was over-
represented (28% observed versus 16% expected). Binders were recovered from all
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Figure 5.8: Affinity estimation of Fabs selected against hIgG2, H1N1-HA, CD152,
an enzyme, a growth factor receptor, and a cytokine receptor. The median value
of (a) KD (in nanomolar) and (b) kd (per second) is shown as a horizontal bar for
each target where the number of Fabs tested were 22, 5, 9, 2, 2, and 2 for hIgG2,
H1N1-HA, CD152, an enzyme, a growth factor receptor, and a cytokine receptor,
respectively. Representative biosensor data for kinetic and affinity analyses using
a single analyte concentration for an hFab binding to captured anti-hIgG2 samples
(c) and representative biosensor data for kinetic and affinity analyses using multiple
analyte concentrations for partially purified Fabs binding to captured H1N1-HA (d).
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CDR-H3 lengths included in the design, with the number of binders for each CDR-
H3 length recovered being significantly correlated with the underlying frequency of
the CDR-H3 length in the library (Pearson’s one-sided p b 0.001) (Fig. 7b). The
library design allowed theoretical clone frequencies to be calculated for any sequence.
This makes it possible to estimate the frequency of a panned binder prior to the en-
richment that occurred during panning. Further analysis of VH1–69 clone frequencies
shows that the majority of recovered binders were rare clones expected to occur only
once in library. Over 69% of recovered binders had an expected CDR-H3 frequency
of less than 10! 9 (Fig. 7c), indicating that the clone should appear at most once in
each initially transformed library. The distribution of clone frequencies in the library
was equivalent to that observed in recovered clones, and panned hits were recovered
from rare and common clones without bias due to the underlying frequency (Fig. 7c).

5.3.3 Discussion

A major goal for library design is to maximize both genetic diversity and functional
diversity. Natural antibody repertoires exhibit high functional diversity but cannot
access all theoretical genetic diversity. Synthetic repertoires generate high genet- ic
diversity but have not been selected for functional success. Incorporating signatures
of selection from natural repertoires into synthetic designs has been demonstrated to
improve functional diversity. Pio- neering work by Zemlin et al. identified charac-
teristic amino acid CDR3 profiles in natural repertoires.7 Recent developments in
next-genera- tion sequencing have allowed direct observation of millions of diverse
antibody variants that have survived positive, negative, and antigen-driven selection.
Analysis of antibody repertoires by these methods have improved our understanding
of biases in germ-line usage, germ-line heterodimer pairing, somatic hypermutation,
and position-specific amino acid usage of the highly diverse CDR3.6 A sufficiently
precise synthetic technology could use the biases in natural repertoires as design
features in synthetic libraries.

In contrast to the oligonucleotide-based diversity generation methodologies, the
novel library synthe- sis technology utilized here makes it possible to control codon
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Figure 5.9: Amino acid and clone frequency analyses of 306 recovered binders from
the VH1–69 sublibraries. (a) Comparison of the amino acid usage in CDR-H1 and
CDR-H2 between sequenced library (D) and binders recovered from panning (P). All
amino acids in design are recovered in binders, and positional frequency is correlated.
(b) CDR-H3 length distribution between sequences recovered from library and 399
unique sequences recovered from panning against specific antigens. (c) Comparison
of theoretical clonal frequencies in library and recovered binders. The majority (69%)
of recovered binders were derived from low-frequency clones.
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and frequency while avoiding a majority of stop codons, frameshifts, and other com-
mon errors of gene and library assembly. Reducing stop codons and frameshifts will
increase the proportion of functional diversity in any library. However, the principal
advantage of the novel synthetic approach is improved precise control over positional
amino acid frequencies. This novel library synthesis technology enables the generation
of synthetic antibody libraries from designs of significant complexity. In this study,
the synthesis approach was used to design antibody diversity directly after selected,
biased amino acid frequencies observed in natural repertoires.

A combination of novel synthetic technology and natural mimic design resulted
in a library with a high proportion of correctly folded, functional antibodies. In
1790 clones evaluated, 93.4% were observed to display both a correctly folded heavy-
chain Fab and a correctly folded light-chain Fab on their surface coats. The observed
expression effi- ciency was substantially higher than the 61–77% reported for other
large synthetic library designs of comparable diversity.18,21 Lower stop codon and
frameshift rates contribute to the improved expres- sion performance but do not com-
pletely explain the difference. Rothe et al. reported 77% of clones expressing Fab, but
only 9% frameshifts, suggesting that a subset of sequences may have been misfolded
without obvious errors in translation. Steipe et al. have made the general observa-
tion that there is a correlation between the stability of an antibody and sequence
proximity to other known, well-folding antibodies.23 We observed unbiased synthetic
de- signs to produce a repertoire very distant from the natural repertoire (Fig. 3).
Synthetic designs that mimic natural biased overusage of tyrosine and glycine create
synthetic repertoires that are closer to the natural distribution but clearly remain
distinct.10 The SF-Fab libraries were observed to generate antibody populations that
were closer in amino acid composition to natural repertoires than previous synthetic
libraries. It is possible that increased proximity to the natural antibody sequence
land- scape may also contribute to the proportion of antibodies that are able to avoid
misfolding and recognize antigen.

The SF-Fab design combines the high expression of the natural repertoire with
the genetic diversity benefits of synthetic design. The synthetic ligation process re-
produces the natural amino acid frequen- cies without the constraints of linkage. In
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a synthetic repertoire, all possible combinations of amino acids at adjacent positions
are found, with the frequency of each combination being the product of their indepen-
dent frequencies. In contrast, a natural repertoire is generated by the combinatorial
rear- rangement of a finite number of V, D, and J segments. Because adjacent posi-
tions on a given segment are linked in the germ line, the resulting repertoire exhibits
only a subset of all possible amino acid combinations occurring between adja- cent
positions. Eliminating linkage allows greater recombinant diversity, a reduction in
redundant clones, and a more dispersed genetic diversity capable of thorough ex-
ploration of the natural sequence landscape. In contrast with previously observed
donor-derived repertoires,6 no popula- tions of high-frequency (10! 2 to 10! 4) clones
were observed during deep sequencing of the synthetic repertoire, and a very low
recapture rate was observed for CDR-H3 clones even when 7.0 × 105 clones were
evaluated. This reduction of high- frequency, redundant clones contributes to a more
diverse library.

The linkage-free design and in-depth characteri- zation of the library provides a
unique means of interrogating the underlying mechanics of phage display. Previous
publications suggested that very rare clones may be at a disadvantage in panning
recovery.35 The SF-Fab library design and high- throughput characterization allowed
calculation of a theoretical frequency for all clones that correlated to observed frequen-
cies obtained during sequencing. When applied to over 300 recovered binders against
a panel of antigens, the resulting calculation in- dicates that rare clones are recovered
from the library without selective disadvantage. The obser- vation is consequential
for future library designs, as it supports further efforts to maximize nonredun- dant
diversity during library design.

The combined use of immune repertoire sequenc- ing, natural mimic design, and
novel library synthesis technologies has enabled a new class of library generation. Nat-
ural mimic designs combine many of the beneficial properties of natural and synthetic
libraries. As a result of carefully designed diversity, natural mimic libraries are capa-
ble of being more diverse than the natural repertoire while also being closer to human
germ line than are current synthetic designs. The library exhibits improved expres-
sion efficiency over that reported for past synthetic designs and fewer high-frequency
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clones than that observed in donor-derived reper- toires and produces high-affinity
binders against a variety of antigens. Future applications of natural mimic design can
be used to generate specialized libraries with unique repertoire characteristics.

5.3.4 Methods

Library construction Constant parts of the sequence were amplified from a wild-
type-containing plasmid, introducing flanking BpiI, Eco31I, or Esp3I sites for later
assembly with the variable parts. Variable regions were synthesized de novo using
a modification of the Slonomics® procedure for gene synthesis.26 Mixtures of an-
chor molecules were generated in a defined ratio to represent all combinations of two
adjacent positions within a variable region. These mixtures were connected to the
growing DNA chain by ligation. The reaction product was purified by immobilization
on a streptavidin-coated surface. New overhangs for the next reaction cycle were then
generated by restriction with Eam1104I, and a new mixture of anchor molecules was
added. After three to seven reaction cycles, product pairs were combined to generate
transposition intermediates. These were either combined in a second round to form
long variable regions or assembled with constant parts by restriction and ligation.
Length variants were synthesized separately, quantified by PAGE, mixed in a de-
fined ratio, and assembled as one pool. Heavy-chain and light-chain fragments were
synthesized separately in a 1-"g scale and combined by restriction with Esp3I in the
intergenic region and subsequent ligation. Final ligation product was amplified to 100
"g by PCR using Phusion DNA polymerase (NEB) in up to 1000 parallel reactions.

Fab antibody phage display libraries A total of 100 "g of DNA from each of eight
libraries was cut with SfiI and NotI, respectively, purified, and cloned into pRN8910
vector containing a Flag tag and a 10-His tag. To obtain phage antibody libraries,
we transformed TG1-competent cells (Cat. No. 200123, Stratagene) by electropo-
ration using BTX 1-mm-gap cuvettes. For individual library, 100 transformations
were performed in parallel reactions. A total of estimated 3.6 × 1010 transformants
containing Fab antibodies were obtained from a total of 800 electroporations.
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Table 5.1: Zhai Glanville JMB 2011 Table1.

454 amplicon sequencing PCR amplification of the VH and V regions of the SF-
Fab libraries (1–8) was carried out using Amplicon Fusion Primers containing the GS
FLX Titanium Primer A or B sequence for the Lib-A chemistry, six-base barcodes,
and specific primers complementary to the constant regions of the vector. A 1:4
mixture of Platinum Taq (Invitrogen) and Pfu (Promega) polymerases was used for
the amplification with15cyclesof94°Cfor45s,56°Cfor45s,and72°Cfor 1 min followed by
72 °C for 10 min. Gel-purified PCR products were quantified using the Quant-iT
PicoGreen assay (Invitrogen), and amplicon lengths were assessed using the Agilent
Bioanalyzer 2100 DNA Chip 7500. The VH and V amplicons of the corresponding
SF-Fab libraries were pooled at a ratio of 2.3:1. The pools were diluted and subjected
to emulsion PCR and bidirectional sequencing using reagents and protocols for the
GS FLX Titanium Lib-A chemistry (Roche). SF-Fab1–4 and SF-Fab6–8 were pooled
in equal quantities and sequenced in one region of a two-region GS FLX Titanium
Run. SF-Fab5 was sequenced to a greater depth over two regions of a 2-region GS
FLX Titanium Run.

Sequence QC Pass-filter reads were obtained from standard 454 signal processing.
Reads with perfect matches to multiplex identifiers were translated and aligned to
a reference profile hidden Markov model.6 Short reads and reads with detectable
insertion or deletion errors were eliminated, leaving full-length reads covering at least
90 amino acids of variable domains in a single frame. Synonymous substitution errors
were ignored entirely, and sequences with substitution errors in framework boundary
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positions of CDRs were excluded from analysis (Supplementary Fig. 5). Although the
approach is able to detect and eliminate the majority of errors, two error types remain:
nonsynonymous substitutions in CDRs and double-indel errors within a single CDR.
Previous reports establish 454 error rates as 0.08% substitutions per base, 0.18%
inserts per base, and 0.13% deletions per base.36 Given the reported error rates for
the Roche GS20, the number of errors expected to escape filters can be estimated.
Nonsynonymous mutations per CDR length 10=((0.08% mut/bp sub-error)×(75.5%
nonsynon/mut))×3 bases per codon×CDR length 10=1.8% per CDR3 length 10.
CDR compound indels per CDR length 10 = ((30 bases × 0.18% insert rate)×(29
bases×0.13% deletion rate))=0.2% per CDR length 10. The estimated error rate will
have minimal impact on assessments of CDR length distributions or position-specific
amino acid frequencies. Clonal frequen- cies can be expected to be underestimated
by 2% when an error causes a loss in observed clone copy number.

Amino acid usage Amino acid usage was recorded as a position-specific scoring
matrix, with the observed frequency of each amino acid at each position in a gapless
global alignment of sequences of the same length (each CDR-H3 length had a separate
position-specific scoring matrix). Observed amino acid usage was compared to the
expected one at every designed variable position by Pearson’s r. Amino- acid-specific
bias was evaluated by taking the observed/ expected ratio of incorporation at any
position, irrespec- tive of absolute frequency or sequence context.

Clonality assessment Observed clone frequency is the frequency that a clone ap-
pears in a sampling of a sequence population. Observed clone frequencies can be
calculated as the number of observed copies of that clone ni over the total number
of observed clones N. The observed clone frequency should be considered unreliable
when ni = 1 and increasingly reproducible as ni grows greater than 1. Rare clone
frequencies can be determined only up to 1/(2 × depth).

Theoretical clone frequency is the expected frequency for a clone, given a known
distribution of CDR-H3 lengths, a known composition of positional amino acid fre-
quencies in the design, and an assumption of positional independence (linkage-free
design). Theoretical clone frequency can be calculated as

(formula)
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Table 5.2: Zhai Glanville JMB 2011 Table2.

where fi is the frequency of clone i, Prob( i) is the probability (frequency) of the
CDR length observed in sequencei,Prob($i,p|PFM )istheprobabilityofobserving amino
acid $ at position p of sequence i given the position frequency matrix PFM for length
.

Evaluating natural repertoire sequence space V-segment natural repertoire dis-
tance was calculated as the number of amino acid changes in CDR1 and CDR2 com-
pared to the closest germ-line framework from IMGT. CDR-H3 natural repertoire
distance was calculated as the number of amino acid changes in CDR-H3 compared
to the closest CDR-H3 in a large natural reference database. The natural CDR-
H3 repertoire reference set included 1.43 million nonredundant amino acid sequences
from 16 donors diverse in age, gender, and ethnographic origin (unpublished results).
The sequences included all residues between Kabat 94 and Kabat 101, noninclusive.
For a given CDR, distance to reference was the number of amino acid mismatches
to the most similar CDR of the same length in the reference set. For a collection of
sequences, the distance is the distribution of distances of all members, with distances
normalized by CDR length.

Linkage Correlations between adjacent amino acids in natural and synthetic CDR
designs were quantified by evaluating the fraction of all potential triplets actually
observed in a reference set of 100,000 sequences. For each reference global gapless
alignment of CDR4 length 14, all amino acids observed with at least 1% frequency
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at each position were recorded. For each amino acid at each position n, the fraction
of all potential neighbor combinations at positions (n ! 1) and (n + 1) was recorded.

Selection of SF-Fab libraries The rescue of phage antibody particles with helper
phage VCSM13 was performed according to previously published methods.37 For the
selection, 1013 colony- forming units of phage was incubated with either biotinylated
antigens (solution-phase selection) or anti- gens coated onto immune tubes (solid-
phase selection). Most antigens were biotinylated at a ratio of 1–5 molecules of EZ-
link Sulfo-NHS-LC-LC-biotin per molecule of antigen according to the manufacturer’s
instruction (Pierce, Cat. No. 21338). For solution-phase selection, the biotinylated
antigens were captured by 100 "l of streptavidin-coated superparamagnetic beads
(Dynabeads® M-280 streptavi- din, Cat. No. 112.06D from Invitrogen) in 1-ml
volume of Dulbecco’s phosphate-buffered saline–0.1% bovine serum albumin in Ep-
pendorf tubes. Following 5× washing, the preabsorbed libraries were incubated with
the antigens captured onto the beads. The protein antigens were used for solution-
phase selection at a starting concentration of 200 nM and gradually reduced to 5 nM
along with increasing of panning rounds. For the peptides, 1 "M, 500 nM, 250 nM,
and 25 nM were used. The specific antibodies to various antigens were selected and
screened by ELISA and Biacore after three to four rounds of biopanning. The unique
antibodies were confirmed and clustered by sequencing.

Soluble Fab expression Individual colonies were inoculated in 1.5 ml of 2YT– ampi-
cillin containing 2% glucose media in 96-well plates and cultured at 30 °C overnight.
The cultures were centrifuged at 4000 rpm for 20 min, and the cell pellets were re-
suspended in 1.5 ml of 2YT–ampicillin media supplemented with 1 mM IPTG for
the induction. After continuing to culture at 30 °C for 5 h with shaking at 200 rpm,
the cell pellets were resuspended in 300 "l of Hepes-buffered saline. After freezing
and thawing three times, cell lysates were filtered and the soluble Fabs were screened
and tested via ELISA and Biacore. For the interested hits, the Fab antibodies were
reformatted, expressed, and purified in 293 cells. We routinely obtained 20–30 mg of
antibodies per liter of the culture.
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ELISA For the screening after panning, biotinylated antigens were captured on
pre-immobilized streptavidin plates at room temperature (RT) for 1 h, and non-
biotinylated antigens in phosphate-buffered saline (PBS) were coated on MaxiSorp
ELISA plates at 4 °C overnight. Plates were then blocked with 1% bovine serum
albumin–PBS at RT for 1 h. The soluble Fabs prepared from the culture were added
to plates and incubated at RT for 2 h. Following five washes with PBS plus Tween
20, the bound Fab antibodies were detected with either anti-human kappa or anti-
His HRP antibody, and the optical density was measured at a wavelength of 405
nm. Clones giving a positive signal in ELISA (over three times of the background)
were further analyzed via sequencing and Biacore. For the test of Fab expression, 50
"l of anti-His antibody (2 "g/ml) was coated onto ELISA plates at 4 °C overnight.
Following washing and blocking, soluble Fabs were added and detected by HRP-
conjugated anti-kappa and/or anti- human Fab antibody.

Biosensor analysis for monovalent antigens The kinetic and affinity analyses for
monovalent antigens (hFab, an enzyme and a growth factor receptor) were performed
on a Biacore 2000 biosensor equipped with a CM5 sensor chip. The SF-Fabs prepared
as described above were captured from undiluted superna- tant via an amine-coupled
anti-Flag capture molecule. The antigen was flowed as the analyte at a single concen-
tration or, in other cases, as a dilution series using a kinetic titration methodology.
In both cases, guidelines for accurate kinetic analysis were employed, and data were
double-referenced as described in Myszka38 and Karlsson et al.39 Figure 6c shows
representative data and fits for the single analyte concentration method where the
monova- lent antigen was hFab. Data were fit using a 1:1 Langmuir model with mass
transport.

Biosensor analysis for multivalent antigens The kinetic and affinity analyses for
multivalent antigens (CD152 Fc Fusion and H1N1-HA) were per- formed on surface-
plasmon-resonance-based biosensors (Biacore 2000 and ProteOn XPR36, respec-
tively). The CD152 Fc Fusion was captured via an anti-human Fc surface that was
amine-coupled onto a Biacore CM5 chip, and partially purified Fab was flowed as the
analyte using a kinetic titration methodology. Biotinylated H1N1-HA was captured
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via neutravidin that was amine-coupled onto a ProteOn GLH sensor chip, and par-
tially purified Fabs were analyzed in parallel using an array-based kinetic titration
methodology as described in Abdiche et al.40 Data were fit using a 1:1 Langmuir
model with mass transport. Supplementary materials related to this article can be
found online at doi:10.1016/j.jmb.2011.07.018
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5.4 Engineering in-vivo synthetic repertoires

Chicken immune responses to human proteins are often more robust than rodent re-
sponses because of the phylogenetic relationship between the different species. For



CHAPTER 5. APPLICATIONS IN ENGINEERING SYNTHETIC REPERTOIRES451

discovery of a diverse panel of unique therapeutic antibody candidates, chickens there-
fore represent an attractive host for human-derived targets. Recent advances in mon-
oclonal antibody technology, specifically new methods for the molecular cloning of
antibody genes directly from primary B cells, has ushered in a new era of generat-
ing monoclonal antibod- ies from non-traditional host animals that were previously
inaccessible through hybridoma technology. However, such monoclonals still require
post-discovery humanization in order to be developed as therapeutics. To obviate
the need for humanization, a modified strain of chickens could be engineered to ex-
press a human-sequence immunoglobulin variable region repertoire. Here, human
variable genes introduced into the chicken immunoglobulin loci through gene target-
ing were evaluated for their ability to be recognized and diversi- fied by the native
chicken recombination machinery that is present in the B-lineage cell line DT40. Af-
ter expansion in culture the DT40 population accumulated genetic mutants that were
detected via deep sequencing. Bioinformatic analysis revealed that the human tar-
geted constructs are performing as expected in the cell culture system, and provide
a measure of confidence that they will be functional in transgenic animals.

5.4.1 Introduction

Historically, therapeutic monoclonal antibodies have been derived from immunized
mice and phage display technologies. However, antigens that are conserved through-
out mammalian evolution are typically weakly or non-antigenic in mice. In some
cases, the fail- ure to elicit an immune response in mice has been obviated by immu-
nizing chickens (1–3). Early attempts to use chicken-derived antibodies were thwarted
by the lack of technology to derive mon- oclonal antibodies from non-murine animals.
A fusion partner for chicken B cells was identified to create an avian version of the
classical murine hybridoma technology (4) although it has not gained wide usage
and phage display has been used more frequently to isolate chicken monoclonals
(5–11). We developed technology to isolate antigen-specific monoclonal antibodies
from immunized chickens using a single lymphocyte screening and recovery method,
the gel-encapsulated microenvironment (GEM) assay (see US Patents 8030095 and
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841517382). The GEM assay involves placing a single antibody-secreting lymphocyte
in prox- imity with reporters (which can be cells or beads). The secreted antibody
diffuses locally within the GEM and has the opportunity to bind to the reporters.
Bound antibody can be detected either directly through the use of a secondary anti-
body or by eliciting a response in the reporter that generates a visual signal. Each
GEM may contain multiple types of reporters which can be differenti- ated from each
other based on color. Selected GEMs are isolated and antibody genes are amplified
through RT PCR and cloned into a mammalian expression vector, usually in scFv
format.

The advantage of producing antibodies to conserved epitopes in chickens prompted
the development of humanization protocols to obviate the immune response in pa-
tients to the avian V regions of chimeric antibodies (7, 8). An alternative approach to
eliminat- ing the anti-animal response in patients is to engineer the animal to produce
human immunoglobulins (12). We are currently creating a line of chickens that will
produce antibodies with fully human V regions. Human V regions will be recovered
from these birds using GEMs. We will then combine the human V segments with
human constant regions to produce fully human antibodies with therapeutic poten-
tial. The human V region sequences have been designed to replace the equivalent
chicken coding regions while leaving most of the endogenous IgH and IgL regulatory
sequences intact.

Diversification of chicken immunoglobulin genes is achieved through gene con-
version (GC) and somatic hypermutation (SHM) (13). In humans, diversification is
achieved through V(D)J recombination and SHM. Because of the phylogenetic dis-
tance between humans and chickens and the known differences in the mechanism of
diversity generation, it was prudent to evaluate the genetically modified V regions
in vitro before investing in the much longer timeline to produce genetically modified
birds.

A preliminary evaluation of expression and diversification of human immunoglob-
ulin V regions in DT40 cells was previously reported (14). Briefly, chicken VL and
VH loci were knocked out in DT40 and replaced with human VK (VK3-15) and VH
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(VH3- 23) genes. To achieve GC of human genes in chicken B cells, human pseudo-
gene arrays were inserted upstream of the func- tional human VK and VH regions.
The sequences of the VK and VH functional genes served as the starting template
for the design of the human pseudogenes. Proper expression of chimeric IgM com-
prises human variable regions and chicken constant regions were shown. Sanger-based
sequencing of selected DT40 genetic variants confirmed that the human pseudogene
arrays contributed to the generation of diversity through GC at both the Igl and Igh
loci. Although these data showed that engineered pseudogene arrays contribute to
human antibody sequences in chicken B cells, a more thorough repertoire analysis
was not possible as only a relatively small number of events were analyzed.

Here, we have used next-generation sequencing methods to study much more com-
prehensively the repertoire generated by a long-term, non-selected culture of DT40
cells harboring targeted human V genes, analyzing well over 1 million sequences for
each of the heavy and light chains. We are now able to show that the engineered
locus can produce a diverse pool of human antibody sequences in chicken B cells.

5.4.2 Results

READ QUALITY ANALYSIS Analysis was performed by processing all reads
through VDJFasta. Sequences were assigned closest segments with a probabilistic
clas- sifier. All reads were translated into six-frames of translation and analyzed for
Ig content by profile-Hidden–Markov model scor- ing with VDJFasta, with a 1e-10
cutoff for significance. Pass-cutoff frames were aligned using the pHMMs and ana-
lyzed for framestate and coverage. Over 96% of reads contained full-length clones,
with over 1 million HuVH reads and 2 million HuVK reads available for downstream
analysis (Table 2).

COMPARISON TO INSERTED ARRAYS OF V GENES Nucleotide and trans-
lated CDRs were extracted from pro- file Hidden–Markov model alignments, using
minimum profile annealing cutoffs to ensure high fidelity CDR capture [see Ref. (15)].
CDRs were compared to a reference database containing all V genes and pseudogenes
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Figure 5.10: Diagrams of light chain (A) and heavy chain (B) loci in cell line
1208-1. (A) In the light chain, the endogenous rearranged chicken VL and its pro-
moter in DT40 was replaced by an array of human SynVK-C pseudogenes and a
rearranged functional HuVK gene driven by the chicken VL promoter.The chicken
ΨVL pseudogene array, constant region (Cλ), J–C intron,and3´ flankingDNAarein-
tact.Aβ-actin-hygromycin,β-actin- blasticidin resistance cassette (box labeled Hygro-
blast) was placed between the chicken and human pseudogene arrays as part of
the transfection process. (B) In the heavy chain, the endogenous rearranged chick-
enVH and350bpofitspromoterregionwerereplacedbytheSynVH-B humanpseudogenear-
ray,thechickenVH promoter,andarearranged functionalhumanVH gene.Theupstream-
chickenΨVH pseudogenearray, the chicken JH-Cμ intron, and constant regions are
intact. A β-actin-EGFP, β-actin-puromycin, β-actin-neomycin selectable marker cas-
sette (box labeled GFP-puro-neo) was placed between the chicken and human pseu-
dogene arrays as part of the transfection process. Gene conversion in both heavy and
light chains is depicted as blocks of sequences (colored blocks) being transferred from
the pseudogenes to the HuVK and HuVH functional genes.

that were included in the targeted array. Counts of exact match to reference database
were stored for all CDRs.

SEQUENCE COMPLEXITY The extracted sequences were highly redundant in
both the heavy chain and light chain data sets, with the single functional human
V gene being seen predominately in its respective group. The non- mutated VK
represented 81% of all the full-length sequence reads and the non-mutated VH 57%
of the total. These non-mutated sequences are referred to as the “reference” sequences
(one for VH and one for VK). For the heavy chain, 9125 unique clones were found at
a minimum 2× sequence depth; for the light chain, 7671 unique clones were found.
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If the sequences are counted at a 1× sequence depth a total of 21,403 unique heavy
chains and 33,848 unique light chain genes were seen.

IDENTIFYING GENE CONVERSION AND SOMATIC HYPERMUTATION
EVENTS Each framework and CDR was analyzed separately, with an exact- match
assignment performed to reference synthetic human frame- works designed into the
transgenic organism. A control search was also performed with all known native IgL
and IgH chicken segments, but they were never encountered in the repertoire. GC
events were scored if a sequence found in the VK (Table 3) or VH (Table 4) pool
could be traced back to particular pseudo- genes present in the array. In the cases
where gene converted sequences are shared by multiple pseudogenes, one GC event
is counted and all possible donor pseudogenes are indicated. Indi- vidual GC events
were counted at the 1× sequence depth since it is unlikely that stretches of nucleotides
would occur through sequencing or read error. Regardless, all CDR events classified
as GC occurred more than twice in the data set. Within each CDR a high proportion
of the unique sequences matched perfectly with the reference sequence. Those that
deviated from the reference sequence in ways that could not be clearly attributed
to GC are labeled as “SHM or fusion” and this category includes single or multiple
point mutations as well as possible complex events (i.e., multiple sequential GC).
Sequencing errors would be expected to show up in this category, possibly inflating
the observed events.

EVALUATION OF POTENTIAL CONTRIBUTION OF ENDOGENOUS
CHICKEN PSEUDOGENES The IgL and IgH knockouts were made by delet-
ing portions of the functional VJC and VDJ regions, respectively, by homologous
recombination. Since endogenous chicken pseudogenes remain upstream of the
inserted human V gene array, they could in prin- ciple contribute to repertoire
diversity. We specifically checked for such events by creating a library of all known
chicken pseudogenes and running the analysis as we did with the library containing
our human pseudogenes. Evidence of endogenous pseudogenes participating in GC
events was never observed.

GENE CONVERSION AND SHM IN FRAMEWORK REGIONS Since some
diversity was incorporated into the frameworks of the inserted VK pseudogenes, it
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Figure 5.11: Human light and heavy chain pseudogene sequences. (A) Alignment
of SynVK pseudogenes in the SynVK-C construct. Top line shows the sequence of
the functional HuVK gene that is mutated by the SynVK pseudogenes. The CDRs
(boxes; IMGT nomenclature) were derived from human EST databases. Some pseu-
dogenes also contain framework changes derived from the ESTs. At the 3´ end of the
pseudogenes, the sequence of the flanking DNA downstream of CDR3 in each pseudo-
gene is shown. This flanking sequence is part of the 100 bp spacer sequence inserted
between each pair of pseudogenes. (B) Alignment of the SynVH pseudogenes in the
SynVH-B construct. Top line shows the sequence of the functional HuVH gene. The
CDRs consist of a tyrosine/tryptophan/serine scan. The framework regions contain
no changes.
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was possible to identify GC events as well as SHM events in these regions (Table 5).
Fewer GC attributable sequences were found in the VK frameworks as com- pared
to the VK CDRs; however, this may be due simply to the lower framework diversity
that was incorporated in the pseudogene design.

IDENTIFICATION OF MULTIPLE GENE CONVERSION EVENTS In some
cases, we were able to identify sequences with contri- butions from two different pseu-
dogenes, and these are termed paired-fusion events (Tables 6–8). Partial GC was ana-
lyzed using the parsimonious assumption of single-conversion events within the CDR
as a source of non-100% identity match to the SynVH pseudogene segment reference
database. Custom software was written to generate all non-redundant fusion events
that can emerge between pairwise interactions of the reference database sequences.
Paired-fusion events are highly biased in their relative occurrence, as an analysis of
the most commonly encountered rearrangements demonstrates. Paired-fusion events
were not fea- sible to determine for SynVK due to the sequence complexity inherent
in this array.

POSITIONAL VARIATION PROFILING OF THE REPERTOIRE Analysis of
positional amino acid variation was performed by con- verting a total alignment of
non-redundant amino acid sequences into a positional weight matrix (PWM), with
reference residue frequency omitted to emphasize non-reference residue variation (Fig-
ure 3). The number of amino acids observed at each posi- tion cannot be attributed
to GC events including both complete replacements and single paired fusions. These
observations suggest that the diversity generated by GC is augmented by SHM.

5.4.3 Discussion

The DT40 cell line has been used extensively to better understand the nature of im-
munoglobulin diversification in chickens, includ- ing the mechanism of GC (18–21).
The cell line has also been used to develop chicken antibodies to novel targets using
in vitro selec- tion strategies (22, 23). We have inserted human V gene arrays into
the chicken immunoglobulin loci of DT40. In principle, the human V genes in DT40
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Figure 5.12: Positional weight matrices of non-reference residue variation, by Kabat
position. (A) HuVK variation, indicated positionally. (B) HuVH variation, indicated
positionally.
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cells could be diversified in vitro to pro- vide an unselected library of immunoglob-
ulin sequences from which antigen-specific antibodies could be extracted. However,
most therapeutic antibodies are derived from immunized ani- mals producing affinity-
matured, antigen-specific antibodies. In the current context, we have used DT40 cells
to provide in vitro proof of concept that arrays of human-derived immunoglobu- lin
gene sequences can be diversified by chicken B cells. Sub- sequently, these sequences
will be introduced into chickens to provide genetically engineered animals that can be
immunized to produce affinity-matured, antigen-specific antibodies with ther- apeutic
potential. Thus, our purpose with DT40 is to determine whether targeted synthetic
human V gene arrays can be used as a substrate for genetic diversification in chicken
cells in a way that mirrors what is known regarding the native chicken immunoglob-
ulin loci. Affirmative data in the DT40 culture system inspires confidence that the
effort required on the arduous path to gen- erating a genetically engineered chicken
will be rewarded with a transgenic animal that performs as expected.

We have previously shown that our heavy and light chain arrays can be diversi-
fied by both GC and SHM in DT40 cells (14). This analysis involved conventional
sequencing of a few hundred clones sampled from a large population of DT40 cells.
Some examples of expected diversification events were seen, but most events were
likely missed at that depth. Next generation sequence technol- ogy allows for identi-
fication of very rare events in a non-selected, non-biased cellular population. Indeed,
we were able to show in the current work that every pseudogene in our array was
used by some cell in the population. The finding of paired-fusion events, wherein GC
occurs using two different pseudogenes in succession is expected in a fully functional
locus. It has been estimated that wild-type chicken B cells undergo 1–2 independent
GC events on average during affinity maturation (24).

We were also able to confirm our previous conclusion that for both heavy and
light chains, GC is more prevalent in CDR1 and CDR2 than CDR3, which is heavily
skewed toward SHM. This finding is also consistent with previously published results
(25). Nonetheless, a mix of both templated and non-templated mutations is seen in
all CDRs, resulting in a repertoire with amino acid diversity at every CDR position.
It will be interesting to see if a similar bias can be seen in the SynV chicken, in which
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processes of cellular selection may affect the repertoire in a way that is not seen in
DT40, which has no selection pressure for surface Ig expression or specificity.

While it is reasonable to use deep sequencing on our DT40 population to determine
whether certain types of events have occurred, caution should be used in interpreting
the observed frequency results because of the nature of the long-term DT40 culture
system. In such a system, clones with particular sequences could have a growth
advantage, or alternatively, a particular muta- tion could occur very early in the
expansion of the culture and then subsequent mutations could occur in addition,
potentially creating a large number of “unique clones,” which carry the orig- inal
mutation. For instance, in our VHCDR2 data, we find a very large number of clones
bearing a S53R substitution (Figure 3). The high frequency observed could be the
result of a true muta- tional hotspot that mutated many times independently, or
simply the result of a single random mutation that occurred early in the expansion of
the population. One sequence bearing this substitu- tion is highly redundant in our
sample, second only to the starting sequence; this is consistent with the existence of a
large subpopu- lation wherein secondary mutations could have occurred. Further, if
S53R is an aberration, it skewed our data to make it appear that SHM in HC CDR2
is extremely high relative to GC, which may not be the correct interpretation.

In summary, the DT40 culture system, coupled with deep sequencing methodolo-
gies, is an excellent tool for the functional testing of arrays of synthetic human V genes
designed to be diver- sified and affinity-matured in vivo. Our deep sequencing results
confirm that arrays of human V genes can be targeted into the immunoglobulin loci of
chicken cells and the host machinery can diversify those genes over time in a manner
that recapitu- lates in vivo GC in the B cells of wild-type chickens. Furthermore,
when rare events are included in the analysis, it is clear that even in a relatively small
population of cells, all of the introduced pseudo- genes are capable of participating in
GC, and that codons for non-templated amino acid residues are generated through
SHM in every CDR of both light chain and heavy chain. These data support the
concept of introducing constructs containing all nec- essary genetic elements required
for diversification in the B cell compartment, contributing to a functionally diverse
repertoire of human-sequence antibodies in a transgenic chicken. Once made, this
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bird will be the most evolutionarily divergent host of any human-Ig transgenic an-
imal currently available, and will be par- ticularly well suited to generating novel
antibodies to therapeutic targets that are conserved among mammals.

5.4.4 Methods

CULTURE OF CHICKEN DT40 CELLS CARRYING HUMAN V GENES A deriva-
tive of the chicken B cell line DT40 was made in which the chicken immunoglobulin
variable regions were replaced with human variable regions in both the IgL and IgH
loci (14). In both loci, the active functional allele was targeted, thereby switching
the cells from expressing normal chicken surface IgM to the expres- sion of chimeric
IgM, consisting of human variable regions and chicken constant regions. A derivative
of DT40, cell line 1208-1, was produced by serial transfection with knockout con-
structs fol- lowed by site-specific insertion of constructs for the expression of human
V regions. To take advantage of the GC machinery in DT40, upstream arrays of
human-sequence pseudogenes were included in the transgenes to provide the donor
sequences for mutating the single functional human kappa (HuVK) and human heavy
chain (HuVH) regions (Figure 1). Pseudogene arrays were synthesized by Bio Basic
(Markham, ON, Canada). These pseudogenes were based on the sequences of the
functional HuVK and HuVH regions, with diversity incorporated into the comple-
mentarity determin- ing regions (CDR), and in some cases, the framework regions as
well (Figure 2). The pseudogenes were thus designed de novo and not based on the
endogenous pseudogenes found in the human genomic heavy and light chain loci. We
refer to the HuVK pseudo- genes as the SynVK array and the HuVH pseudogenes
as the SynVH array. Diversity in the SynVK array was derived from human EST
sequences, whereas the SynVH array was made by scanning substitution of CDR po-
sitions with tyrosine, tryptophan, or ser- ine residues. Furthermore, additional AID
hotspots (nucleotides WRC/GYW) were incorporated into the SynVK-C construct,
as silent changes. In the 1208-1 cell line, construct SynVH-B was inserted at the
heavy chain locus, followed by insertion of the SynVK-C construct at the light chain
locus. The sequences of the pseudogene arrays are shown in Figure 2.
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The 1208-1 cell line was propagated for 10 weeks with both SynVK-C and SynVH-
B transgenes to allow mutations to accumu- late prior to harvesting genomic DNA for
sequencing (additionally, the precursor cell line carrying only the SynVH-B construct
was cultured for 3weeks before transfection of the SynVK-C con- struct). The culture
was expanded to 1.85e8 cells and gDNA was purified by Qiagen DNeasy kit.

GENERATION OF AMPLICONS FOR SEQUENCING Purified gDNA from the
1208-1 DT40 cell line was sent for further processing to Genewiz, Inc. The HuVK and
HuVH regions were amplified using the primers in Table 1. Amplicons were sequenced
by Genewiz, Inc. (South Plainfield, NJ, USA) on the Illumina MiSeq 2x250 platform
(Illumina, Inc., San Diego, CA, USA). Raw data files are available online at the NCBI
sequence read archive (SRA), project PRJNA275158, accession number SRP055184.

SEQUENCE DATA ANALYSIS High throughput sequencing reads were analyzed
using VDJ- Fasta (http://www.distributedbio.com/vdjfastadocs/), a general anti-
body repertoire algorithm suitable for interpretation of engi- neered antibody diver-
sity. In order to control for possible residual chicken content, we used a combination
natural chicken and human synthetic segment classification database. In order to
ana- lyze the repertoire comprehensively in a manner unbiased by the underlying GC
mechanics, we used general profile Hidden– Markov models to identify immunoglob-
ulin content and align sequences in a consistent manner independent of nucleotide
composition. Kabat positional annotations were transferred from Hidden–Markov
model columns to every aligned sequence in the resulting database, enabling consis-
tent annotation of frameworks and CDR boundaries (15–17).
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5.5 Engineering de-novo TCRs with optimized ac-

tivity

In Chapter 2.2, we presented a method for generating de novo TCRs with prescribed
specificity (Figure 2.5). The operates by first taking a specificity group of similar
TCRs, grouped by GLIPH. Those sequences are then aligned, and a Positional Weight
Matrix (PWM) is generated from the alignment, representing the amino acid vari-
ability at each homologous position (Figure 2.5 B, C). Once created, using Formula
(5) (Figure 2.6), it is possible to estimate the probability of any sequence to emerge
from that PWM. When emitted randomly, the top 1000 scoring TCRs were found
to contain some TCRs already found in nature and contributing to the convergence
group, but also many other novel TCRs not found in nature. When these were tested
for cell-based activation activity, 80% of these de novo TCRs were functionally active
and 20-40% were more active than those observed in nature. This can be expected
from the method: the theory is that as one approaches the consensus of a PWM, the
functional property (in this case, activity) of the clones also optimizes.

The approach is a powerful validation of the ability of GLIPH to predict speci-
ficity of TCRs. However, likely more valuable are the implications for engineering - it
is now possible to apply a semi-rational approach to optimize the function of T-cell
receptors. This has the potential to provide guidance in TCR engineering, with appli-
cations in acheiving clarity of fundamental mechanisms as well as direct applications
in generating therapeutic TCRs.
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